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Curve-of-Growth Analysis by Using a Micro-Computer
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1. Introduction

A curve-of-growth analysis is one of the two methods which are mainly
used for the analysis of stellar atmospheres. The other method is a model
atmosphere analysis. Since detailed distributions of physical quantities in a
stellar atmosphere are taken into account in the model atmosphere analysis,
it is also called fine analysis. It is used when accurate observational data are
available and the nature of the stellar atmosphere is known to a good approxi-
mation.

The curve-of-growth analysis is usually used when accurate observational
data are not available or there is not enough knowledge about the nature of
a stellar atmosphere. In this method, one-layer approximation is made, i.e. it
is assumed that there exists a specific value for a physical quantity of the
atmosphere such as pressure, temperature and density. A curve-of-growth is
used in this method. The curve-of-growth is a graphical representation of the
relation between the logarithm of the equivalent width of an absorption line
log W and the logarithm of the number of absorbing atoms times the oscillator
strength log Nf, where f is the oscillator strength and the equivalent width W
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is the width of the rectangular profile for which the height is equal to the con-
tinuum level near the line and the area is that of the line. The equivalent
width divided by wavelength W/2 is often used in stead of W, and some
multiplicative factor is often added to Nf. We obtain by this method a
representative value of the atmosphere for electron pressure, for gas pressure,
for ionization temperature and for excitation temperature 7,, together with
chemical composition. This method is also called coarse analysis. Furthermore,
it is often called absolute curve-of-growth analysis or absolute coarse analysis
in order to distinguish it from the method mentioned below.

In cases in which accurate values for oscillator strength are not known,
the values for the abscissa log X, of the curve-of-growth for the standard star
for which the physical quantities and chemical composition of the atmosphere
are already known are plotted instead of log Nf. In this case, the relative
values to the standard star for the physical quantities and chemical composition
are obtained instead of the absolute values. This method is called differential
curve-of-growth analysis or differential coarse analysis.

The curve-of-growth analysis has conventionally been applied by eye
measure. Thus, there has been a fear that the results obtained by this method
depend on the subjectivity of an analyzer. Moreover, an objective estimate
of error can not been made for this method. Recently, the curve-of-growth
analyses by using a computer have been applied in order to overcome the
above weak points. For example, Tech (1971)V has done a differential curve-
of-growth analysis for Ba Il star { Cap, using e Vir (G8 III type star) as
standard star. In this analysis, he determined the differential reciprocal ex-
citation temperature 46, (0..=5040/T,,) relative to the standard star by the
minimum-sigma method, using a computer. Powell (1971)» has made computer
programs for a differential curve-of-growth analysis of solar-type stars. How-
ever, these methods require a large amount of memory capacity and can be
applied only to a large-sized computer.

Recently, micro-computers have been widely spread. In this paper, the
curve-of-growth analysis by using a micro-computer has been developed. The
micro-computer programs made in this paper have also been applied to { Cap
using the same data as Tech (1971) and the results in this paper have been
compared with those obtained by Tech (1971).

2. The Conventional Procedure of the
Curve-of-Growth Analysis

The most important processes in the curve-of-growth analysis are the
fitting the points of absorption lines in the curve-of-growth plane to a theoret-
ical curve-of-growth and the determination of 6., or of 46,,. In the one-layer
approximation made in the curve-of-growth analysis, a Boltzmann correction
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accounting for the differing populations of the lower energy levels of absorption
lines appears as an additive term in the expression for the abscissa of the
curve-of-growth. In absolute curves-of-growth, that is to say, the quantity
plotted along the abscissa logX,,, is

1OgXabs:10g(gfl) —6exx1’ (1)
and in differential curve-of-growth the quantity along the abscissa logX,,; is
logX,.1=logX;— 40,1, (2)

where g is the statistical weight of the lower energy level and y; is the excita-
tion potential of the lower energy level. Moreover, in the one-layer approxi-
mation, it is usually assumed that a single curve-of-growth can be applied to
neutral atoms and to ionized atoms.

The above processes have been conventionally done in the following way.
First, separate curves-of-growth are prepared for absorption lines of the atom
at the same stage of ionization in each of several small excitation ranges.
Then, each of these empirical curve-of-growth is fitted by eye measure to a
theoretical curve-of-growth. In this fitting, it is assumed that the Boltzmann
correction remains effectively constant for each empirical curve~of-growth, for
the excitation range of the lines plotted for each curve is small. The horizontal
shifts required to fit the separate curves to the theoretical curve are, according
to the expression (1) or (2), linearly related to the mean excitation potential
of the lines plotted for the separate curves. The gradient of this linear function
is taken to be 4, or A46,..

The above procedure has the following weak points: 1) It is necessary
to have sufficient number of lines for each excitation range to enable comparison
with theoretical curves-of-growth; 2) The excitation ranges are rather large
(~1eV) quite often and this leads to a rather large horizontal spread (~1dex)
due to temperature alone in the separate absolute curves-of-growth; 3) The
derived 6, or 40,, depends both on the way in which the available lines are
separated into excitation ranges and on the way in which the fittings are made
by eye measure.

3. The Procedure by Using a Computer Done to Date

Several trials have been done to overcome the above weak points by using
a computer. Two typical examples are explained in the following.

3.1. The Minimum-Sigma Method by Tech

Tech (1971) has done a differential curve-of-growth analysis by using a
computer. His procedure which he called the minimum-sigma method are
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made in the following way.

A preliminary value for 46,, is chosen and the value log X,.; is calculated
according to the expression (2) for each line of a given element at the same
ionization stage. Then, a mean curve of cubic or quartic polynominal is
calculated by the least-squares method to give the best representation of log X,
as a function of log (W/2), and the standard deviation ¢ of the points from
this mean curve in a direction parallel to the log X,.; axis is calculated. By
repeating the above calculation for several values of 46,,, a correlation between
o and 40,, is obtained. A graph of this correlation is generally a smooth
curve with a unique minimum. The adopted value of 40, is taken to be
that value for which o is least. Using this value of 40,,, the empirical curve-
of-growth is reconstructed by plotting for each line log X,.; along the abscissa
and log (W/2) along the ordinate. Then, this empirical curve-of-growth is
fitted to the theoretical curve-of-growth and the horizontal shift of this empiri-
cal curve onto the theoretical one gives the quantity which is related to the
ratio of the number density of the element at the ionization stage concerned
between the star being analyzed and the standard star.

The theoretical curve for { Cap adopted by Tech (1971) was that for
pure absorption in a Milne-Eddington atmosphere calculated by Hunger (1956)%
with damping parameter log (2a)= —2.5 and with log (¢/2R.vp)=4.63, where
¢ is the speed of light and wvp is the Doppler velocity; Rc is the limiting
central depth for strong lines. In the paper by Tech (1971)D, he wrote, “The
theoretical curve that offers the best fit to the majority of the empirical curves
of growth for { Cap, and the one that has been adopted, is that for pure
absorption in a Milne-Eddington atmosphere...”, but he did not describe the
details of the fitting, e.g. the criterion of the best fit.

As a test of this procedure, Tech (1971) has determined A40,, value of ¢
Vir relative to the sun from neutral iron lines. His result of 0.19 is in good
agreement with the value 0.18 derived by Cayrel and Cayrel (1963)% and
0.17 by Nishimura (1967)%.

The strong points of this procedure, which is the reversal of the weak
points of the conventional procedure, are as follows: 1) Each line is treated
separately and separate weight can be applied to each line; 2) Correct excitation
potentials rather than mean values of excitation ranges are taken into account;
3) It gives dispassionately reproducible results and objective estimates of error.

On the other hand, this procedure has the following weak points: 1)
Great care must be exercised in assuring that no widely discordant lines are
used; 2) Since lines on the flat or damping portions of the curve-of-growth
will dominate the value of ¢ and mask the variation due to 46,,, such lines
are generally excluded in the analysis, which brings about ambiguity to the
results; 3) There is not a guarantee that the mean curve from which the ¢
values are calculated really represents the distribution of points adequately.
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3.2. The Procedure by Powell

Powell (1971) has made computer programs for a differential curve-of-
growth analysis, using the sun as a standard star. The procedure in these
programs is based on the formulae by Pagel (1964)%, that is, the abscissa in
a curve-of-growth log X is normalized so that log X=Ilog (W/2) for sufficiently
weak lines, and for neutral lines, the quantity plotted along the abscissa in an
empirical curve-of-growth is not the right side of the equation (2) but log X;
+ 46,4y, where 4y is the difference between the ionization potential and the
lower excitation potential.

In this procedure, the 40,, value and the vertical and horizontal shifts to
fit an empirical curve to a theoretical one are first determined, and then the
shape of the theoretical curve which fits best to the empirical one, i.e. the
damping parameter of the theoretical one is determined.

In the determinations of the 46,, value and these vertical and horizontal
shifts, only the lines which are on the linear portion or on the knee of the
flat portion of the curve-of-growth are used, because the 46,, value determined
from these lines depends only slightly on the shape of the theoretical curve
and is not affected very much by the vertical shift adopted in the fitting.

The determinations are done in the following iterative way. First, an
initial value of 46,, is estimated and the empirical curve-of-growth is con-
structed. Secondly, the empirical curve is fitted to the theoretical one by van
der Held (1931)" with a damping parameter «=0.05. Van der Held curves-
of-growth are those for pure absorption in a Schuster-Schwarzschild atmosphere
and Cowley and Cowley (1964)® has found that an absolute curve-of-growth
for the sun constructed by them fits best to the van der Held curve with a=
0.05. Thirdly, the theoretical curve fitted to the empirical one is further
shifted horizontally in order to normalize it so that it passes through the point
(—6.5, —6.5), and the value of log X corresponding to log (W/2) for the star
being analzed is read off for each line from this normalized curve. Lastly, a
new value of A46,, is found from a least-squares solution to the relation,

[(X1=[A4]+40..47, (3)

where square brackets represent the logarithmic difference of the denoted
quantity between the star being analyzed and the sun; A is the number ratio
of a relevant element and to hydrogen uncorrected for ionization. The above
process is repeated until a difference between successive estimates of 44,.
becomes less than 0.005.

Adopting the values of 46, and of the vertical and horizontal shifts thus
determined, the final value of @ is determined by obtaining the best fit of the
empirical curve to a family of van der Held curves on the condition for a
least-squares fit in a direction parallel to the log (W/2) axis for all the points
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in the curve-of-growth. If this value of & is more than a factor of ten greater
or less than 0.05, the above process of the determinations of the A46,, value
and the shifts is repeated using the van der Held curve with the new value
of a.

In the above process of the determinations of the A46,, value etc., the
fitting of the van der Held curve to the empirical one is done on the assump-
tion that the values for the abscissa are accurately known and the values for
the ordinate have a Gaussian error distribution. Consequently, the fitting is
done on the condition for a least-squares fit in a direction parallel to the log
(W[2) axis. This fitting is done in the following way which is also iterative.
First, the initial value of the vertical shift Ay; is taken to be zero and the
initial value of the horizontal shift Ax; is taken to be the mean value of
maximum and minimum values of log (W/1)—log X,—40..4x. Secondly,
values of R are calculated for two 4x values of Ax;+0.15 and of Ax;—0.15,
where R is the derivative with respect to 4x of the sum of the squares of the
deviation in the ordinate of the empirical curve from the van der Held curve
which is shifted horizontally by 4x and shifted vertically by 4y. Thirdly,
the Adx value corresponding to R=0 is estimated from the two R values and
from the two dx values by assuming that a linear relation between R and Ax
exists. Lastly, using this 4x value instead of 4x;, a new estimation of the Ax
value such that R=0 is done. This iteration is continued until the difference
between successive estimates of Ax is less than 0.0002. Using the final 4x
value, a new value of Ay is estimated as a least-squares solution in a direction
parallel to the ordinate. The whole process is repeated until the difference
between successive estimates of Ay is less than 0.00002.

The strong points of this procedure are the same as described for the
minimum-sigma method. The weak points of this procedure also are the same
as the minimum-sigma method, except for the third point. There is, however,
another weak point that there is a fear of divergence in the iterative process.

4. New Procedures by Using a Micro-Computer

Two new procedures of curve-of-growth analyses by using a micro-com-
puter have been developed in this paper. In the new procedures, the merits
of the procedures by Tech (1971) and by Powell (1971) have been made use
of and developed for use with a micro-computer. A micro-computer PC-9801
(NEC) has been used throughout the analysis. The new procedures, which
will be called the method of type 1 and the method of type 2, respectively, are
done in the following ways.

4.1. The Method of Type 1

The method of type 1 consists of two processes. The first process is the
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fitting of theoretical curves-of-growth to an empirical curve. In this process,
the shape of the theoretical curve which fits best to the empirical one is
determined, along with the vertical shifts. The second process is the determi-
nations of the A46,, value and the horizontal shift, using the theoretical curve
and adopting the vertical shift determined in the first process.

In the first process, the fitting is done on the assumption that the values
for the abscissa are accurately known and the values for the ordinate have a
Gaussian error distribution. Consequently, the fitting is done on the condition
for a least-squares fit in a direction parallel to the ordinate. The theoretical
curves fitted to the empirical one are those for pure absorption in a Milne-
Eddington atmosphere calculated by Hunger (1956). The reasons why these
curves are taken are as follows: 1) Hunger (1956) recommended to use these
curves as well as those for coherent scattering in a Schuster-Schwarzschild at-
mosphere; 2) As quoted above, Tech (1971) has found that, among several
types of theoretical curves, one of these curves fits best to the majority of
the empirical curves for { Cap; 3) The author has found that, in a differential
curve-of-growth analysis for ¢ Vir, the empirical curve of Fe I for ¢ Vir fits
more to these curves than to those for coherent scattering in a Schuster-
Schwarzschild atmosphere (Yoshioka (1979)%).

The first process proceeds in the following way. First, a damping param-
eter of the theoretical curve fitted to the empirical one is assumed. Secondly,
a range of the 46,. values is setted. Thirdly, for each value of 40,, in this
range, the horizontal and vertical shifts are determined as a least-squares
solution in a direction parallel to the ordinate, and the standard deviation for
the solution. The stepping value of 46, is usually taken to be 0.01. The
above process is repeated for other values of damping parameter, and the
damping parameter and the vertical shift for which the standard deviation is
minimum are adopted as the final values for these quantities.

In the second process, the determinations are done on the assumption that
values for the ordinate are accurately known and the values for the abscissa
have a Gaussian error distribution. Consequently, the values of 46,, and of
the horizontal shift are determined as least-squares solutions in a direction
parallel to the abscissa.

The program for the first process written in BASIC is listed in Appendix
1, which program is named “COG1”. In this program, the determination of
the horizontal shift 4x and vertical shift Ay for given values of 46.. and
damping parameter is done as follows. First, two Ax values are setted, and
the A4y values and the standard deviations ¢ for the two 4x values and for the
mean value of these two Jx values are calculated. Secondly, the Ax value
which give a minimum o¢ value Ax, is estimated by assuming that ¢ is a
quadratic function of 4x. Lastly, the 4y values and the ¢ values are calculated
for the 4x values ranging from 4x,—0.09 to Ax,+0.09, where the stepping
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value of 4x is usually taken to be 0.01, and the Ax value and the corre-
sponding 4y value which give a minimum ¢ value are selected.

The program for the second process also written in BASIC is listed in
Appendix 2, which program is named “COG3”. In this program, a gradient
of the theoretical curve-of-growth for the ordinate of a line is taken into
account as a weight for a least-squares solution. The program in which the
gradient is not taken into account has also been made and it is named “COG2”.

The above programs are based on the formulae by Pagel (1964).

4.2. The Method of Type 2

In the method of type 2, the value of 46,. and the values of Ax and
Ay are determined simultaneously with the value of damping parameter, using
only the program “COG2” or “COG3”.

These values are determined in the following way. First, the value of
damping parameter is setted. Secondly, the values of 46,, and of Ax are
determined as least-squares solutions in the direction parallel to the abscissa
for various values of Ay. Thirdly, the Ay value and the corresponding 46,
and 4x values which give a minimum value of the standard deviation o.m,
of the 46 value are selected. The above process is repeated for various values
of damping parameter, and the value of damping parameter and the corre-
sponding values of 40,,, 4x and 4y for which the o, value is minimum are
adopted as the final values for these quantities.

5. Results and Discussion

As a test of this new procedure, a differential curve-of-growth analysis
for { Cap relative to ¢ Vir has been done, using the same data as Tech (1971).
The A6,. values determined by Tech (1971) from Fe I, Ni I, Ti I and Cr I
lines are listed in Table 1. The numbers of lines used by him are not the
total number available. It seems quite probable that he used weak lines with
good quality, but regrettably, he did not describe the criteria for selecting
lines. Then these criteria have been estimated and are described in Table 2.
In this table, the general quality Q estimated by Tech (1971) represents a
degree of reliability of the value of log (/) on a scale of 0 (very poor) to
5 (excellent).

The results by the new procedures are given and are compared with the
results by Tech (1971) in Tables 3, 4, 5 and 6. Tables 3 and 4 give the results
by the method of type 1, where Table 4 gives the result by considering a
gradient of the curve-of-growth also as a weight and Table 4 gives the one by
neglecting the gradient. Tables 5 and 6 give the results by the method of
type 2 by neglecting and by considering the gradient, respectively. In these
tables, the results by using all the lines of the species are given in the columns
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Table 1. Differential reciprocal excitation temperatures of { Cap

relative to ¢ Vir determined by Tech.

Spectrum Number of lines A6,
Fe I 189 ~0.09
Ni I 24 —0.09
Ti 1 34 —0.08
Cr 1 21 —0.14

Table 2. Criteria for weak lines.

73

Number of lines Upper limit Upper limit Lower limit
Spectrum -
All lines ‘ Weak lines | of log (W/2) | of log X, of 0
Fe 1 234 | 189 no —3.2 1
Ni I 44 24 —4.9 no 1
Ti I 41 34 —4.48 no no
Cr 1 31 | 21 —4.5 no 1

Table 3. Differential reciprocal excitation temperature of { Cap relative to ¢ Vir
determined by the method of type 1. The theoretical curve-of-growth is

determined from Fe I lines and has the damping

parameter of log (2a)=

—3.0 and the vertical shift of log (¢/2R,vp)=4.71. The gradient of the
curve-of-growth is not taken into account as a weight.

All lines Weak lines
Spectrum
Weight A6y Ep. e. Weight 40,5 xp. e.

Fe I 0+1 —0.02+-0.0101 Q —0.02+0.0107
(+0.07) (+0.07)

Ni 1 0+1 —0.02+0.0192 Q —0.07+0.0161
(+0.07) (4+0.07)

Ti I 0+1 —0.01+0.0316 0+1 —0.1140.0221
(+0.07) (—0.03)

Cr 1 0+1 +0.0410.0355 0} —0.12+0.0264
(+0.18) (4+0.02)
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Table 4. Differential reciprocal excitation temperature of { Cap relative to ¢ Vir
determined by the method of type 1. The theoretical curve-of-growth is
determined from Fe I lines and has the damping parameter of log (2a)=—
3.0 and the vertical shift of log (¢/2Rcvp)=4.71. The gradient of the curve-
of-growth is also taken into account as a weight.
All lines Weak lines
Spectrum
Weight A0, £p. e. Weight 46,5+ p. €.
Fe I 0+1 —0.03:+0.0085 0 —0.03::0.0092
(+0.06) (+0.06)
Ni I Q+1 —0.040.0176 Q —0.07x0.0168
(4+0.05) (+0.02)
Ti 1 0+1 —0.05+0.0237 0+1 —0.09+0.0211
(4+0.03) (—0.01)
Cr I o+1 —0.010.0294 Q —0.0940.0277
(+0.13) (+0.04)
Table 5. Differential reciprocal excitation temperature of { Cap relative to ¢ Vir
determined by the method of type 2. The gradient of the curve-of-growth
is not taken into account as a weight.
All lines Weak lines
tsrl; er;- Weight Theoretical curve Weight Theoretical curve
g o8 20 Tog 40.,+p. e. g og 20 Tog A6,5%D. €.
(¢/2R.vp) (¢/2R,vp)
Fe 1| O+1 |—2.6] 4.72 —0.04+0.00989 —0.7 4.78 —0.04+0.00887
(+0.05) (+0.03)
Ni I| Q+1 |—2.8] 4.57 —0.05+0.01621 —-1.7 4.26 —0.08+0.01519
(+0.04) (+0.01)
Ti I| @+1 |—1.2y 4.71 —0.12+0.02273 —2.8 4.72 —0.11+0.02203
(~0.04) (—0.03)
Cr 1| 0+1 |—=2.2] 4.61 ~—0.12+0.02851 -3.1 4.70 —0.12+0.02639
(40.02) (+0.02)

designated as all lines, and the results by using weak lines are given in the
columns designated as weak lines, where “weak lines” means the lines which
satisfy the criteria described in Table 2. The values given in parentheses in
these tables are the differences between our results and those by Tech (1971).

Figure 1 shows the curve-of-growth of Fe I obtained by the method of

type 1, using all lines and considering the gradient.

Figure 2 shows the cor-

responding correlation of Fe I lines between the horizontal shift and the 4y

value.
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Table 6. Differential reciprocal excitation temperature of { Cap relative to ¢ Vir
determined by the method of type 2. The gradient of the curve-of-growth
is also taken into account as a weight.
All lines Weak lines
Spec- Teoretical curve Theoretical curve
trum Weight o A0, +p. €. Weight o 464, +p. e.
log 2 2 log2a g
(¢/2E,vp) (¢/2E.vp)
Fe 1| Q+1 |—2.7 4.71 —0.04+0.00835) Q@ |—2.5 4.63 —0.050.00837
(+0.05) (4+0.04)
Ni I| Q+1 |—3.3 4.57 —0.06:£0,01521 o |-1.9 4.30 —0.08+0.01540
(+0.03) (+0.01)
Ti I} Q+1 |—1.3 4.71 —0.09+£0.02050, Q+1 {—2.8 4.72 —0.09+0.02112
(—0.01) (—0.01)
Cr 1| O+1 |—2.4] 4.63 —0.09+£0.02499, Q@ |—2.5 4.70 —0.10+0.02770
(+0.05) (+0.04)
log % + 471
2
0
~]
! i 1 1 3

3

z}.

LogXs—0.03 X +const,

Fig. 1. Curve-of-growth of Fe I for { Cap. The solid line is the theoret-
ical curve with log (2a)=—3.0 and log (c/2R,vp)=4.71, which is
selected by the method of type 1. The filled circles are plotted by
adopting the 46., value as —0.03.

The following conclusions may be obtained from these tables and figures.
1) The method of type 2 by using all lines and by considering the

gradient gives the results which best agree to the results by Tech (1971).

This

method also seems to desirable in priciple, because it is more consistent than
the method of type 1 and the second weak point above described does not
appear by using all lines.
Figure 3.

The bad example by using weak lines is shown in
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AlogX
Lok

0 / 2 3 4 5 6 '747(

Fig. 2. Correlation between the horizontal shift and 4y for all the Fe I
lines of { Cap. The solid line shows the least-squares solution ob-
tained by considering the gradient: 4log X=—0.03 4x—0.08. The
theoretical curve used is the’one shown in Figure 1.

Log} +4563
'2 -

I 1 1 ( L 1

) 0 [ 2 3 4
{ogXs=—0.054%+ const.

Fig. 3. Curve-of-growth of Fe I for { Cap. The solid line is the theoret-
ical curve with log 2a)=—2.5 and log (¢/2R.vp)=4.63. Although
this theoretical curve is selected by the method of type 2 from weak
lines by considering the gradient, all lines are plotted, where the
4,, value are adopted as —0.05.

2) There is an unexpectedly strong dependence of the 46,, value on the
damping parameter and on the vertical shift. The strong dependence occurs
especially for a group of lines where the 4y value correlates strongly with the
location of a curve-of-growth, as in the case of Cr I lines. The extreme cases
for Cr I are shown in Figures 4 and 5. In these cases, even a sign of the
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4logX

12F

0.8
0.4
g

-0.4

0 | 2 3
+ 5 Ax

Fig. 4. Correlation between the horizontal shift and 4y, for all the Cr
I lines of { Cap. The solid line shows the least-squares solution
obtained by neglecting the gradient: 4log X=—0.09 4x+0.04. The
theoretical curve used is the one with log(2a)=—2.5 and log

(¢/2 R,wp)=4.63.

AlogX
0.3

o4F

° 0o %

0_ Ld

-04F

A® o 4

=03
°

L L 1 f 1

0 ! 2 3 4 5

ax

Fig. 5. Correlation between the horizontal shift and 4y, for all the Cr
1 lines of £ Cap. The solid line shows the least-squares solution ob-
tained by neglecting the gradient: A4dlog X=0.04 4x—0.34. The
theoretical curve used is the one with log (2a)=—3.0 and log (¢/2R,

vp)=4.71.

46, value is reversed, depending on the adopted values of damping parameter

and of vertical shift.
3) Some 46,.. values obtained by the new procedures differ markedly

from the 46,, values by Tech (1971), as is shown in Table 7. The cause for
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Table 7. Differential reciprocal excitation temperature of { Cap relative to ¢ Vir
determined by using the same theoretical curve-of-growth as Tech, i.e.,
the curve with log (2Qa)=-—2.5 and with log (¢/2R,vp)=4.63. The
gradient of the curve-of-growth is also taken into account.

All lines Weak lines
Spectrum
Weight A0, £p. €. Weight Abe:tp. e.

Fe 1 0+1 —0.09£0.0096 Q —0.05+0.0084
( 0.00) (4+0.04)

Ni I 0+1 —0.05+0.0156 Q —0.07+0.0163
(+0.04) (+0.02)

Ti 1 0+1 —0.10£0.0211 0+1 —0.114+0.0234
(—0.02) (—0.03)

Cr I 0+1 —0.09+0.0250 Q —0.1240.0289
(+0.05) (+0.02)

the disagreement seems to be the differences in the used lines, which indicates
the strong dependence of the results on the lines used.

On the basis of the above results, the improvements of the new procedures

are being made by the author.

1)

2)
3)

5)
6)

7
8)
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Appendix 1. List of the program “COG1”

10 REM Determination of the Curve of Growth

20 REM The Selected Curve Minimizes the Value for the Sum

30 REM of the Squares of Differences along the Ordinates

40 DEFINT I-K:WIDTH 80,25

50 DIM LAMDA(500),POTEN(500),LGW(500),LGX(500),DKAI(500)

60 DIM W(500),LGXX(500),LGXY(506>,LG¥X(500),TATE(12),V(21),DLGX(21)

70 DIM ER(21),DDLGX(20),VV(20),TTHETA(20),PX(30),PY(30),ALFA(B)

80 DIM A(11,2),TTATE(12,8)

90 K0=0:AA=-1000:PAI=3.14159

100 INPUT "If neutral push N or ion push I";A$

110 OPEN "2:DATA2" FOR INPUT AS #1

120 IF EOF(1) THEN CLOSE #1:GOTO 170

130 INPUT #1,LAMDA(KO), IND,POTEN(KO),LGW(K0),LGX(K0),¥W(X0)

140 W(KO)=W(KO)+1

150 IF LGX(KO)>AA THEN AA=LGX(K0):K1=KO

160 KO0=K0+1:GOTO 120

170 KO0=K0-1

180 OPEN "2:DATAl" FOR INPUT AS #1

190 I=0

200 IF EOF(1) THEN CLOSE #1:GOTO 240

210 INPUT #1,ALFA(D)

220 FOR J=0 TO 12:INPUT #1,TTATE(J,I):NEXT J

230 I=I+1:GOTC 200

240 WEIGHT=0:AB=0

250 FOR 1=0 TO KO

260 IF As="I" GOTO 280

270 DKAI(1)=7.87-POTEN(I):AB=AB+W(1)*DKAI (1) :WEIGHT=WEIGHT+W(I):GOTO 290
280 DKAI(I)=-POTEN(I):AB=AB+W(I1}#DKAI (I):WEIGHT=WEIGHT+W(I)

290 NEXT I

300 PR=SQR(KO*WEIGHT)/.67449

310 INPUT "log(2a)";AALFA

320 FOR I=0 TO 8

330 IF AALFADALFA(I) GOTO 350

340 NEXT 1

350 S1=2x(AALFA~ALFA(I)):S2=81-.5:83=81%(81-1)

360 FOR J=0 TO 12

370 TATE(J)=(TTATE(J,I)+TTATEWJ,1-1))/2

380 TATE(J)=TATE(J)+(TTATE(J,I-1)-TTATE(J,1))%82

380 TATE(J)=TATE(J)+(TTATE(J,I-2)+TTATE(J,1+1)~-TTATE(J,I-1)-TTATE(J,1))*83/4
400 NEXT J

410 DX=AB/WEIGHT

420 LPRINT "log(2a)=";AALFA

430 LPRINT :LPRINT " A6 log(e/2RV) AlogA  prob.err  No.of J":LPRINT
440 INPUT "min(A6),max(A8),8(A8)";TMIN, THAX,DT

450 PRINT "5-max(logX)=";5-LGX(K1),"log(¥/A)=";LGW(X1),"mean Ax=";DX
460 PRINT "max(AlogA)=";5-LGX(K1)-TMIN*DKAI (K1)

470 INPUT "min(AlogA),max(AlogA)";XMIN,XMAX

480 GOSUB *HENKANY

490 PRINT :PRINT " A8 1log(c/2RV) AlogA prob.err No.of J":PRINT
500 THETA=TMIN

510 JJ=0

520 WHILE THETACTMAX+.1%DT

530 JI=JJ+1

540 FOR 1=0 TO KO:LGXX(I)=LGX(I)+THETA*DKAI(1):NEXT 1:GOTO 670

550 PRINT "A@=";THETA,"min(AlogA)=";XMIN,"max(AlogA)=";XMAX

560 INPUT "min(AlogA),max(AlogA)";XMIN, XMAX

570 GOSUB *KEISAN

580 GOSUB *SENTAK

590 PRINT USING "###,##";THETA; :PRINT SPC(2);:PRINT USING "##.##";V(I)PRINT SPC(6);
600 PRINT USING "###.##";DLGX(J); :PRINT SPC(3);:PRINT USING "#.####4""""";ER(J)/PR; !PRINT SPC(2);J;
610 LPRINT USING "###.##";THETA; :LPRINT SPC(2);:LPRINT USING "##.##";V(J);:LPRINT SPC(6);
620 LPRINT USING "###.##";DLGX(J); :LPRINT SPC(3);:LPRINT USING "#.#####""""";ER(J)/PR; :LPRINT SPC(2);J;
630 1F J<4 OR J=21 THEN PRINT "outer point XXMEAN="; XXMEAN: PRINT ELSE PRINT
640 IF J<4 OR J=21 THEN LPRINT "outer point XXMEAN="; XXMEAN:LPRINT :GOTO 550 ELSE LPRINT
650 DDLGX(JJ)=DLGX(J):VV(JJI=V(J):TTHETA(JJ)=THETA

660 THETA=THETA+DT

670 XMIN=DLGX(J)-.4-DX#DT:XMAX=DLGX(J)+.4~DX*DT

680 WEND

690 BEEP:BEEP:BEEP

700 INPUT "If you want the graph of the Curve-gf~Growth, Push Y";ANSsS
710 IF ANSS<>"Y" GOTO 800

720 INPUT "A&";THETA

730 FOR I=0 TO JJ

740 IF THETA>TTHETA(I)-.1%DT AND THETACTTHETA(I)+.1%DT GOTO 780

750 NEXT I

760 GOSUB *GRAPH

770 ANSS=]INKEYS

780 IF ANS$="" GOTO 770

790 CLS 3:CONSOLE 0,25,1,0

800 INPUT "If you repeat with other log(2a) or Af, Push Y";ANSS$

810 IF ANS®="Y" THEN PRINT :PRINT :LPRINT :LPRINT :GOTO 310

820 END

830 +HENKANY

840 FCR I=1 TO 10

850 ACI,0)=(TATE(I+2)+TATE(I-1)-TATE(1+1)-TATE(1))/4

860 A(I,1)=(5*TATE(I+1)~3%TATE(I)~TATE(I+2)-TATE(I-1))/4

870 A(1,2)=TATE(I)

880 NEXT 1
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890 A(0,0)=(TATE(2)+TATE(0)-2*%TATE(1))/2

900 A(0,1)=(4*TATE(1)~3*TATE(0)-TATE(2))/2

910 A(0,2)=TATE(0)

920 A(11,0)=(TATE(12)+TATE(10)-2%TATE(11))/2

930 A(11,1)=(TATE(12)~-TATE(10))/2

940 A(11,2)=TATE(11l)

950 RETURN

960 *KEISAN

970 XMEAN=(XMIN+XMAX)/2

980 DLGX(0)=XMAX:DLGX(1)=XMIN:DLGX(2)=XMEAN

990 FOR I=0 TO 2 .

1000 FOR J=0 TO KO:LGXY(J)=LGXX(J)+DLGX(I):NEXT J

1010 B=0:C=0

1020 FOR J=0 TO KO

1030 IF LGXY(J)<-1 GOTO 1150

1040 2=~.5

1050 FOR K=0 TO 11

1060 IF LGXY(J)<=Z GOTO 1120

1070 Z=Z+.56

1080 NEXT K

1090 IF AALFA>=-2.001 THEN AC=EXP((LGXY(J)+AALFA)*LOG(10))/2:P=PAI*SQR(AC/SQR(PAI))/2:GOTO 1160
1100 PRINT "There iz a line whose value for logX+A8+Ax-AlogA is greater than 8"
1110 PRINT "10gX+A6 + Ax+AlogA=";LGXY(J):GOTO 550

1120 P=A(K,0):Q=2%(LGXY(J)+.5~2)

1130 FOR 1[1=1 TO 2:P=P#Q+A(K,II):NEXT 1I

1140 GOTO 1160

1150 P=(LGXY(J)+10)#(TATE(0)+10.052)/9-10.052

1160 LGWX(J)=P

1170 B=B+W(J)*(P-LGW(J))

1180 NEXT J

1190 V(1)=B/WEIGHT

1200 FOR J=0 TO KO:C=C+W(J)#(V(I)+LGW(J)~-LGWX(J))“2:NEXT J

1210 ER(I)=SQR(C)

1220 NEXT I

1230 XXMEAN=XMEAN+,25% (XMAX~-XMIN)»*(ER(1)~ER(0))/(ER(0)+ER(1)-2%ER(2))
1240 XXMIN=CINT (100#XXMEAN)/100-.09

1250 FOR 1=0 TO 18

1260 B=0:C=0

1270 FOR J=0 TO KO:LGXY(J)=LGXX(J)+XXMIN:NEXT J

1280 FOR J=0 TO KO

1290 IF LGXY(J)<-1 GOTO 1430

1300 Z=-.5

1310 FOR K=0 TO 11

1320 IF LGXY(J)<=Z GOTO 1400

1330 Z=Z+.5

1340 NEXT K

1350 IF AALFA>=~2.001 THEN AC=EXP((LGXY(J)+AALFA)*LOG(10))/2:P=PAI*SQR(AC/SQR(PAI))/2:GOTO 1440
1360 XXMIN=XXMIN-.01=%I

1370 PRINT "There is a line whose value for logX+A@ +Ax+AlogA is greater than 5"
1380 PRINT "10gZX+A 6 + Ax+AlogA=";LGXY(J),"No.of I";I,"XXMIN=";XXMIN
1390 INPUT "min(AlogA)";XXMIN:I=0:GOTO 1260

1400 P=A(K,0):Q=2%(LGXY(J)+.5~2)

1410 FOR 11=1 TO 2:P=P#Q+A(X,II):NEXT II

1420 GOTO 1440

1430 P=(LGXY(J)+10)*(TATE(0)+10.052)/9-10.052

1440 LGWX(J)=P

1450 B=B+W(J)*(P-LGW(J))

1460 NEXT J

1470 V(1+3)=B/WEIGHT

1480 FOR J=0 TO KO:C=C+W(J)*(V(I+3)+LGW(J)-LGWX(J))"2:NEXT J

1490 ER(I+3)=SQR(C) :DLGX(I+3)=XXMIN

1500 XXMIN=XXMIN+.01

1610 NEXT I

1620 RETURN

1630 *SENTAK

1540 IF XMIN>XXMIN-.191 AND XMINKXXMIN-.009 THEN ER(1)=100000!

1680 IF XMAX>XXMIN~.191 AND XMAX<XXMIN-.009 THEN ER(0)=100000!

1560 IF (XMIN+XMAX)/2>XXMIN~,191 AND (XMIN+XMAX)/2<XXMIN-.009 THEN ER(2)=100000!
1670 ERMIN=100000!

1580 FOR I=0 TO 21

1580 IF ER(I)>ERMIN GOTO 1610

1600 J=I:ERMIN=ER(1)

1610 NEXT 1

1620 RETURN

1630 *GRAPH

1640 SCREEN 2,0:COLOR 0

1650 CONSOLE 0,25,0,0:CLS 3

1660 FOR J=0 TO KO:LGXY(J)=LGX(J)+THETA%*DKAI (J)+DDLGX(I) :LGWX(J)=LGW(J)>+VV(I) :NEXT J
1670 LINE(20,380)-(630,380)

1680 LINE(20,20)-(20,380)

1690 FOR J=0 TO 3:LINE(17,40+J%100)~-(20,40+J%100) :NEXT J

1700 FOR J=0 TO 6:LINE(20+J%100,380)~(20+J%100,383) :NEXT J

1710 LOCATE 58,23,0:PRINT "logC"

1720 LOCATE 2,24,0:PRINT -1;

1730 FOR J=1 TO 6:PRINT TAB(2+INT(J%12.5));:PRINT J~1;:NEXT J

1740 LOCATE 4,0,0:PRINT "Log(W/2RAA) log2o=";AALFA;SPC(6);"log(c/2RV)=";VV(])
1750 FOR J=D TO 3:LOCATE 0,3+INT(6.25%J),1:PRINT 2-J:iNEXT J

1760 FOR J=0 TO 30:PX(J)=-1+J%.2:NEXT J

1770 FOR J=0 TO 30

1780 IF PXsJ)(-l GOTO 1870
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Z=-.5
FOR K=0 TO 11

IF PX(J)<=Z GOTO 1840
Z=Z+.5

NEXT K
P=A(K,0):Q=2%(PX(J)+.5-2)

FOR II=1 TO 2:P=P*Q+A(K,II):NEXT 11

GOTO 1880

P=(PX(J)+10)*(TATE(0)+10.052)/9-10.052

PY(J)=P

NEXT J
IPX1=CINT(100%PX(0))+120:IPY1=240-CINT (100%PY(0))
FOR J=0 TO 29

IPX2=CINT(100%PX(J+1))+120: IPY2=240-CINT(100%PY(J+1))
LINECIPX1,1PY1)-(IPX2,1PY2)

IPX1=IPX2:IPYl=1PY2

NEXT J

FOR J=0 TO KO

IPX=CINT (100%LGXY(J)): IPY=CINT (100%LGWX(J))

IF IPX>500 OR IPY>220 GOTO 2020

IF IPX<-100 OR IPY<-140 GOTO 2020
IPX=IPX+120:1PY=240-1PY

CIRCLE(IPX, [PY),3:PAINT(IPX,IPY)

NEXT J

RETURN

81



82

Kazuo YosHioka

Appendix 2. List of the Program “COG3”’

REM Determination of A6 and <AlogA)> for Single Species
REM The Selected Curve Minimizes the Value for the Sum
REM of the Squares of Differences along the Abscissa

REM The Gradient of the Curve Is Taken into Account for Weight

DEFINT I-K:WIDTH 80,25
DIM LAMDA(500),POTEN(50C),LGW(500),LGX(500),DKAI(500)
DIM ¥(500),1I¥(500),DX(500),DDX(500),LGXA(500)
DIM ALFA(8),Y(11),TATE(12),TTATE(12,8),A(11,2)
INPUT "“If neutral push N or ion push I";AS$
INPUT "log(2a)";AALFA

OPEN "2:DATA1" FOR INPUT AS #1

=0

IF EOF(1) THEN CLOSE #1:GOTO 170

INPUT #1,ALFA(I)

FOR J=0 TO 12:INPUT #1,TTATE(J,I):NEXT J
I=1+1:G0TO 130

FOR 1=0 TO 8

IF AALFA>ALFA(I) GOTO 200

NEXT 1
S1=2%(AALFA-ALFA(I)):S2=81-.5:83=81%(51~1)
FOR J=0 TO 12

TATE(J)=(TTATE(J, I)+TTATE(J,I-1))/2
TATE(J)=TATE(J)+(TTATE(J, I-1)-TTATE(J, 1)) *S2

TATE(J)=TATE(J)+(TTATE(J, 1-2)+TTATE(J, I+1)-TTATE(J, 1~-1)~TTATE(J, 1)) %S53/4

NEXT J

GOSUB *HENKAX

INPUT "log{c/2RV)";V
1=0:JJ=0:DKAI1=0:DKAI2=0:IWW=0

OPEN "2:DATA2" FOR INPUT AS #1

IF EOF(1) THEN CLOSE #1:GOTO 390

INPUT #1,LAMDA(I), IND,POTEN(I),LGW(I),LGX(I),I¥W (D)
IW(I)=IW(I)+1

IF A$="I" GOTO 350

DKAI(1)=7.87-POTEN(I);GOTO 360
DKAI(I}=-POTEN(I)

LGH(I1)=LGW (1) +V

TWW=TWW+IW(DD

I=[+1:JJ=JJ+1:GOTO 300

I=1-1:PX=0:PXY=0:¥WW=0

FOR J=0 TO 1|

YY=LGW(J):GOSUB *KEISAN:GOSUB *KEISAN1
DX(J)=X-V~,052-LGX(JI) W) =IW(I)/DCiWW=WW+W (J)
NEXT J

WR=IWW/WW:iWW=0

FOR J=0 TO I:W(J)=W(J)*WR:WW=WW+W(J)INEXT J

FOR TO 1
_DKAI1=DKAI1+W(J)*DKAI(J):DKAI2=DKAI2+W(J)*DKAI(J)"2
PX=PX+¥W(J)%*DX(J) :PXY=PXY+W(J)*DX(J)*DKAI (J)

NEXT J

D=DKAI2#WW~DKAI1"2

THETA= (PXY*WW~DKAI1*PX)/D:AA= (DKAI2%PX-DKAI 1%PXY)/D
PP=0

FOR J=0 TO I

DDX (J)=DX(J)-THETA#DKAL (J) ~AA: PP=PP+¥ (J)*DDX{J) "2
NEXT J

PETHETA=.67449%53QR (WWxPP/ (JJ~2)/D) i PEAA=.67449*SQR(DKAI2*PP/ (JJ-2)/D)

BEEP: BEEP : BEEP

INPUT "Critical Difference";CD

CLS 3

LPRINT "log (2a) = ";AALFA,"log (c/2RV) = ";V,"Number of Lines
PRINT "Af =";THETA,"Probable Error=";PETHETA

LPRINT "A6& =";THETA,"Probable Error PETHETA

PRINT » [Al = ";AA,"Probable Error=";PEAA:PRINT

LPRINT " [A] = ";AA,"Probable Error=";PEAA:PRINT

LPRINT :LPRINT “Critical Difference = ";CD:LPRINT

PRINT "Wavelength";SPC(5);"Log(W/A) LogX";8PC(11);"Difference" :PRINT
LPRINT "Wavelength";SPC(5);"Log(¥/d) LogX";SPC(11);"Difference”:LPRINT

FOR J=0 TC I

IF ABS(DDX(J>)<CD GOTO 720

PRINT LAMDA(J);SPC(7);LGW(J)-V;SPC(7);LGX(J);SPC(7);DDXJ)
LPRINT LAMDA(J);SPC(7);LGW(J)-V;SPC(7);LGX(J);SPC(7);DDX(J)
NEXT J

ANS$=INKEYS

IF ANS$="" GOTO 730

CLS 3

INPUT "Graphic (Relation [X] vs 4x) Y or N";ANSS
IF ANS$="N" GOTO 810

GOSUB #GRAPH1

ANS3$=INKEY$

IF ANS$="" GOTO 790

CLS 3:CONSOLE 0,25,1,0:LOCATE 0,0,1

INPUT “Graphic(Curve of Growth) Y or N";ANSS

IF ANS$="N" GOTO 880

GOSUB #GRAPH2

ANSS=INKEYS

IF ANS3="" GOTO 850

CLS 3:CONSOLE 0,25,1,0:LOCATE 0,0,1

END
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*HENKAX
REM LogC=A(I,0)#Y"2+ACI,1)%Y+A(1,2) Y=1og(W/(2-R-AA))

DIM E(10),F(10),G(10)

=-1

D=(TATE(0)-TATE(1))*(TATE(1)~TATE(2))*(TATE(2)~TATE(0))
E(0)=(TATE(1)~-(TATE(0)+TATE(2))/2)/D

F(0)=((TATE(0) "2+TATE(2)"2)/2~-TATE(1)"2)/D
G(0)=Z-(TATE(0) % (2+TATE(1)*(TATE(0)~TATE(1))+TATE(2)*(TATE(2)~TATE(0))))/(2%D)
AC0,0)=E(0):A(0,1)=F(0):A(0,2)=G(0)

FOR I=1 TO 10
Z=Z+ .5

D= (TATE(1)~TATE(I+1))*(TATE(1+1)-TATE(1+2))*(TATE(I+2)~TATE(I))
E(I)=(TATE(I+1)~-(TATE(I)+TATE(I+2))/2)/D
F(I)=((TATE(I)"2+TATE(I+2)"2)/2-TATE(1+1)"2)/D
G(I)=Z~(TATE(I)*(2*TATE(I+1)*(TATE(1)-TATE(I+1))+TATE(I+2)*(TATE(I+2)-TATE(I))))/(2%D)
ACL,0)=(EC(I-1)+EC1))/2: A1, 1)=(F(I-1)+F(I))/2:A(1,2)=(G(I-1)+G(1))/2
NEXT 1

FOR 1=0 TO 11:Y(I)=TATE(I+1):NEXT I
A(11,0)=E(10):A(11,1)=F(10):A(11,2)=G(10)

RETURN

*KEISAN

REM LogC is calculated from Log(W/(2-R-AA))

IF YY=TATE(0) GOTO 1190
FOR K=0 TO 11

IF YY<=Y(K) GOTO 1160

NEXT K i
X=-.1437+2%YY-AALFA+LOG(1+SQR(1+2.4674%(10"AALFA/10"YY)"2))/LOG(10):GOTO 1200
X=A(K,0)

FOR II=1 TO 2:X=X#YY+A(X,I1):NEXT II

RETURN

X=9%(YY+10.052)/ (TATE(0)+10.052)~10

RETURN

*GRAPH1

CLS 3:SCREEN 2,0:COLOR 0:CONSOLE 0,25,0,0

DKAIMAX=0:DXMIN=100:DXMAX=-100

FOR J=0 TO I

IF 1W(J)=0 GOTO 1290

IF ABS(DKAI(J))>DKAIMAX THEN DKAIMAX=ABS(DKAI(J))

IF DX(J)<DXMIN THEN DXMIN=DX(J)

IF DX(J)>DXMAX THEN DXMAX=DX(J)

NEXT J

PRINT "Max(AlogX)=";DXMAX,"Min(AlogX)=";DXMIN

INPUT "Max.Graduation, Min.Graduation, Interval of Graduation";MAXGR,MINGR,DGR
MS0=320/ (MAXGR-MINGR) : MSA=590/DKAIMAX:CLS 3

LINE(40,345)-(635,345) :LINE(40,20)~(40,345)

1GO=INT ( {MAXGR-MINGR) /DGR+.1)

FOR J=0 TO IGO

LINE(37,25+CINT (MSO*J*DGR) )~ (40, 25+CINT (MSO*J*DGR) )

NEXT J

IGA=INT (DKAIMAX)

IF A$="N" GOTO 1420

FOR J=0 TO IGA:LINE(630~CINT(MSA%J),345)~(630-CINT(MSA%*J),348):NEXT J

GOTO 1430

FOR J=0 TO IGA:LINE(40+CINT(MSA#J),345)~(40+CINT (MSA%J),348) :NEXT J

LOCATE 0,25,0

IF A$="N" GOTO 1470

FOR J=IGA TO O STEP -1:PRINT TAB(77-INT(J*MSA/8));:PRINT -J;:NEXT J

GOTO 1480

FOR J=0 TO IGA:PRINT TAB(4+INT(J#MSA/8));:PRINT J;:NEXT J

FOR J=0 TO IGO

LOCATE 0,2+INT(MSO#J%DGR/16),0:PRINT MAXGR-J*DGR;

NEXT J

LOCATE 0,1,0:PRINT "AlogX";

IF AS$="N" THEN LOCATE 18,24,0:PRINT "Ax" ELSE LOCATE 18,24,0:PRINT ""

FOR J=0 TO I

IF I¥(J)=0 GOTO 1590

IF A$="N" GOTO 1570

IPX=630+CINT (MSA%DKAI(J)) : IPY=25+CINT (MSO* (MAXGR-DX(J))):GOTO 1580
IPX=40+CINT (MSA%DKAI (J)) : IPY=25+CINT (MSO% (MAXGR-DX(J)))

CIRCLE(IPX, IPY),3:PAINT(IPX, IPY)

NEXT J

IF As="1" GOTO 1670

IPX1=630:IPY1=25+CINT (MSO*(MAXGR~AA-THETA*DKAIMAX))

IF AADMAXGR+.5/MSO THEN IPY2=25:]PX2=40+CINT (MSA%(MAXGR-AA)/THETA) :GOTO 1650
IF AA<KMINGR-.5/MSO THEN IPY2=345:IPX2=40+CINT(MSA%(MINGR-AA)/THETA):GOTO 1650
1PX2=40:1PY2=25+CINT (MSOx (MAXGR~AA))

LINE(IPX1,IPY1)~-(IPX2,IPY2)

RETURN

1PX1=40:1PY1=25+CINT (MSO* (MAXGR-AA+THETA®DKAIMAX) )

IF AA>MAXGR+5/MSO THEN IPY2=25:1PX2=630-CINT (MSA%(AA-MAXGR)/THETA):GOTO 1710
IF AA<CMINGR-5/MSC THEN IPY2=345:1PX2=630~CINT(MSA%(AA~MINGR)/THETA):GOTO 1710

IPX2=630:IPY2=25+CINT (MSO* (MAXGR-AA))
LINE(IPX1,IPY1)-(IPX2,IPY2)

RETURN

*GRAPH2

CLS 3:SCREEN 2,0:COLOR 0:CONSOLE 0,25,0,0

FOR J=0 TO 1:LGXA(J)=LGX(J)+THETA%*DKAI(J)+AA+V+,052:NEXT J
LINE(20,360)-(630,360)

LINE(20,20)~-(20,360)

FOR J=0 TO 3:LINE(17,20+J%100)-(20,20+J%100):NEXT J
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1790 FOR J=0 TO 6:LINE(30+J%100,360)-(30+J%100,363) :NEXT J
1800 LOCATE 3,22,0:PRINT TAB(69);:PRINT "LogC"
1810 LOCATE 2,25,0:FOR J=0 TO 6:PRINT TAB(2+INT(J*12.5));:PRINT J-1;:NEXT J

1820 LOCATE 3,0,0:PRINT "Log(W/(2RAA))I";SPC(18);"log2a = ";AALFA;SPC(8);"log(c/2RV) = ";V
1830 FOR J=0 TO 3:LOCATE 0,1+INT(6.25%J),0:PRINT 2-J:NEXT J
1840 PPY=2

1850 YY=PPY:GOSUB *KEISAN

1860 IF X>5 THEN PPY=PPY-.1:GOTO 1850

1870 IPX1=CINT(100%X)>+130:1PY1=220-CINT(100%PPY)
1880 PPY=PPY-.1:YY=PPY:GOSUB *KEISAN

1890 IF PPY<-1.4 OR X<-1.21 GOTO 1930

1900 IPX2=CINT(100%X)+130:1PY2=220-CINT(100%PPY)
1910 LINE(IPX1,IPY1)-(IPX2,IPY2)

1920 IPX1=IPX2:IPY1=1PY2:GOTO 1880

1930 FOR J=0 TO I

1940 IPX=CINT(100*LGXA(J)):IPY=CINT(100%LGW(J))
1950 IF IPX>500 OR IPY>200 GOTO 1990

1960 IF IPX<~110 OR IPY<-140 GOTO 1990

1970 IPX=IPX+130:1PY=220-1PY

1980 CIRCLE(IPX,IPY),3:PAINT(IPX,IPY)

1990 NEXT J

2000 RETURN

2010 *KEISAN1

2020 REM Gradient of the curve is calculated from log(W/(2*R+*AA))
2030 IF YYCTATE(0) THEN DC=9/(TATE(0)+10.052) :RETURN
2040 FOR K=0 TO 11

2050 IF YY<=Y(XK) GOTO 2080

2060 NEXT K

2070 DC=2:RETURN

-2080 DC=2*A(K,0)*YY+A(K, 1) :RETURN



