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New Approximate Formulae for Hopf’s Function
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I. Introduction

Hopf’s function is the nonlinear part of the source function for the gray and
plane-parallel atmosphere which is in radiative equilibrium. It is defined by

S(z) :%F (r+q(2)), (1)
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where 7 is the optical depth, F is the integrated astrophysical flux and q(z) is Hopf’
s function ; S(7) is the source function for the gray and plane-parallel atmosphere in
radiative equilibrium.

Accurate values of Hopf’s function for several tens of 7 values have been calcu-
lated. For example, the q(0) value has been derived theoretically to be 1//3
(Chandrasekhar (1960) ), and q(o0) value was calculated to be 0.71044609 by Placzek
and Seidel (1947)?. Kourganoff (1952)® gave a table of the q(z) values obtained by
the iterated variational method, and Mihalas (1978)% gave one obtained by numerical
integration. The table by Kourganoff (1952)® gives the q(z) values for 30 7 values,
and the table by Mihalas (1978)* gives the q(z) values for 20 = values. These tables
give the q(7) values with 6 significant figures. However, there are several discrep-
ancies in the q(z) values between these tables. Yoshioka (1985)% gave a table of the
q(z) values for 70 7 values obtained by numerical integration. This table gives the q
(z) values with 9 significant figures. Furthermore, Yoshioka (1985)% calculated by
numerical integration the q(co) value to be 0.710446089599.

The source function S(z) is often used as the first approximation to the source
function in iterative calculations of the temperature distribution in model atmospheres.
It is also used for the evaluation of the accuracy of quadrature formulae for the mean
intensity and the flux integrals.

Approximate formulae for Hopf’s function have been used for model atmospheres
and for this evaluation. The approximate formulae with high accuracy are necessary
especially for the evaluation of the quadrature formulae with high accuracy. Many
approximate formulae for Hopf’s function have been proposed. Among the formulae
widely known, the most accurate one is that obtained from the sixth order lambda
iterated variational method by Kourganoff (1952)®. According to the estimation by
Kourganoff (1952)%, this formula gives the q(z) values which are correct to within +
0.000002 (+0.0003%).

Recently, Shinozuka (1991)® obtained the approximate formula from the eighth
order lambda iterated variational method. In this paper, the coefficients of the
approximate formula by Shinozuka (1991)® have been modified and the accuracy of
this formula has been improved.

II. The Approximate Formula by Kourganoff

II.1. The Principle of the Lambda Iterated Variational Method
Kourganoff (1952)® expressed Hopf’s function q(z) approximately by an expan-
sion of the following form,

q(z) ~_—.AO+§2 AE, (7). 2)
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In this expansion, E; (z) is the exponential integral function of order j, which is defined
by

oo e—tx
E,(®) =[ “Sdx. 3)
Kourganoff (1952)® determined the coefficients A,, Az, Aj, oo+ , A, by the following

variatinal method.
Under the condition of radiative equilibrium, S(z) must satisfy the following
relation,
o7{S{t)}=F, (4)
where the operator ®z is the integral operator which transforms a source function into
an astrophysical flux and it is defined by

or(SM))= 2 S(+0E M dt—2 ['S(r—OE.(Dat. 8
By substituting from the definition (1) into the relation (4), we get the following relation,
@z (S Flt+a®))=F, )

By substituting from the expansion (2) into the relation (6), we get the following
approximate relation,

g (1) 2 Ay (2) =5 i (2), @
iZ
where
¢o (7) =@7{1} =2 E;(7), (8)
$(r) =@{t) =5 —2E.(2), 0
and
¢ () =07{E;(t)} j=2). (10)
In the relation (7), Kourganoff (1952)% gave to 7 a sequence of m discrete values
T, Ta, v , 7m and solved, by the method of least squares, the system of m equations
of condition,
A0¢0(Tk)+_22 Ajfﬁj(fk) :‘%‘“tﬁ:(fk), (11)
i
where k=1, 2, ------ , m. On writing
Gﬂpq:—'ké1 ¢p(7k) ¢q(Tk)» (].2)
and
=2 ¢qlm), 13
k=1

we get the following system of normal equations which corresponds to the system of
the equations (1),

@oqalo +j§2 @iq A :%5; ®@q " @gq- 14
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With the solution A, A,, ==+ , An of the system of the equations (14, the expansion (2)
gives an approximate formula for Hopf’s function.

Moreover, Kourganoff (1952)® applied the operator Az to the source function S
() where q(z) is approximated by the expansion (2). The operator Az is the integral
operator which transforms a source function into a mean intensity and it is defined by

AAS&)F?%0%(r+OEJUva%A%(r—OEJOdt i

By substituting from the expansion (2) into the definition (1), we get the following
expression,

AdSM}?%Fh+%EAﬂ+AuJﬂ

+2 Ak(2), 19
where
ho() = Ar{l}=1-5F; (2), )
()= Ar{E; (1)} (j=2), 18
and the following relation is used,
Az{t} =7+% E, (7). 19

Comparing the expression (If) with the definition (1), we get the following approximate
expansion for Hopf’s function.

a(2) 5 By (2) +Ao{1=4 Ba(2))+ 3 A, (2), )

This expansion is the approximate formula obtained from the lambda iterated var-
iational method (hereafter referred to as the nth order lambda iterated formula), while
the expansion (2) is the approximate formula obtained from the variational method
(hereafter referred to as the nth order formula).

11.2. The Formulae Obtained by Kourganeff

Kourganoff (1952)® obtained the sixth order formula and the sixth order lambda
iterated formula from the method described above. He chose as a sequence of m
discrete 7 values the following 16 values :

7=0.00,0.01;0.02,0.03;0.05;0.10;0.20,0.30;0.40;0.60:0.80;
1.00;1.50;2.00; 2.50; 3.00.

The values of E;(z)’s, ¢;{(z)’s, and A;(7)’s were calculated numerically in the
following way.

The E, (z) values were calculated by the following expansion,

oo k
Ei(z)=—y~loge | 7| + 2 (=D* ' Ty, al
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where y is the Euler-Mascheroni constant. The E;(z) values for j=2 were calculated
by the following recurrence formula,

jEj‘Fl(T):e-T_TEj(T) (jzl). )
The values of ¢ (z), ¢ (z), and A,(z) were calculated from the E;(z) values by the
equations (8), (9), and (7), respectively. The values of ¢;(z)’s and 4;(z)’s for j=2 were
calculated by the following equations,

() =1, () -2 N, () —?E‘;{I—@J, )

and
85 (0) =20~ My, (2) +2 Npwt (1) +2 By () + 3 £ 70, o

In the above equations, the values of M;(z)’s and N;(7)’s for j=1 were calculated by

the following recurrence formulae.
iM; (z) =—zM;_; () +e 7 loge 2+ (—1)er E, (2 7)
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+3 (~D'Ei(2), i)
1X107°

L&
(,0/0)_.:
<] o
e ©
e (o)
5X1071 o
L o0
- 9'0 ‘o
L e ° ° s
(ST, ° 000000%"; %"
0:0‘:::5.?.]:J?§e:§.,"::
[¢]
x 6000°%, 0 %, 8 1
- -] ©
L e ° ?Qb@off’
| o Cogen
—5X107* o o
L 0o ®
71Xl0~3_

Fig. 1 The accuracy of the calculation by the sixth order formula and the sixth order
lambda iterated formula obtained by Kourganoff (1952)®. The ordinate is the
relative error and the abscissa is log,oz. The open and filled circles represent the
errors of the sixth order lambda iterated formula and of the sixth order formula,
respectively.
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and
iN;j(#) = —zN;_; (z) — (y +1oge7) e‘f~k.é1 E.(z)
The values of M, (z) and N, (z) were calculated by the following expansion,
Mo (7) =~ (y+loger)E, (— 1) —%(y-l-loger)2

1 0 k
+5 7+ [Ei(r) —E, (—-1)110g62~k§1 akkf‘k!,

and

Ny (7) == (y+log.7)E, (7) —-%-(y—%logg)z

T S O
272 D
Table 1 The q(z) values with 9 significant figures which were calculated
by Yoshioka(1985)% and are correct to within one unit in the 9th
place of decimals

T q(z) T q(7) T q(z)
0.00 0.577350270 0.80 0.693533945 3.00 0.709807751
0.01 0.588235475 0.85 0.694986110 3.20 0.709955672
0.02 0.595390802 0.90 0.696293233 3.25 0.709986731
0.03 0.601241385 0.95 0.697472689 3.40 0.710068189
0.04 0.606286279 1.00 0.698539318 3.50 0.710114019
0.05 0.610757413 1.10 0.700383383 3.60 0.710154103
0.06 0.614788767 1.20 0.701908309 3.75 0.710205066
0.07 0.618467295 1.25 0.702571390 3.80 0.710219928
0.08 0.621853757 1.30 0.703177083 4.00 0.710270519
0.09 0.624992852 1.40 0.704238341 4.20 0.710309510
0.10 0.627918738 1.50 0.705130143 4.25 0.710317783
0.15 0.640133327 1.60 0.705882612 4.40 0.710339639
0.20 0.649550411 1.70 0.706519828 4.50 0.710352048
0.25 0.657119564 1.75 0.706801435 4.60 0.710362975
0.30 0.663366042 1.80 0.707061203 4.75 0.710376979
0.35 0.668616706 1.90 0.707522503 4.80 0.710381089
0.40 0.673091255 2.00 0.707916619 5.00 0.710395177
0.45 0.676945331 2.20 0.708543868 6.00 0.710430782
0.50 0.680293581 2.25 0.708673120 7.00 0.710441364
0.55 0.683223036 2.40 0.709007768 8.00 0.710444601
0.60 0.685801358 2.50 0.709193115 9.00 0.710445613
0.65 0.688082184 2.60 0.709353367 10.00 0.710445935
0.70 0.690108722 2.75 0.709554426
0.75 0.691916258 2.80 0.709612455
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where a,’s are defined by the following expansion,

=2 (Lt oo +2p 1)+ 9
and
Apper =2 (1+ Aot e )
3 5 2 p+ 1 2p+1
He obtained the following values for the coefficients Ag, A,, -+~ , At
Ay=0.710447 ; A,=—0.283903 ; A;=0.642454 ; A,=—1.224316
A;=1.423034 ; As=—10.590226. &)

The accuracy of the calculation by the sixth order formula and the sixth order
lambda iterated formula with these coefficients is shown in figure 1. This is obtained
by comparing the calculated q(z) values by these formulae with the q(z) values
calculated by Yoshioka (1985)®. The calculation by these formulae is done with a
personal-computer PC-9801 VM 2 (NEC) with double precision floating number. The
program is written in BASIC. The q(7) vaslues calculated by Yoshioka (1985)% are
listed in table 1. As is shown in figure 1, the accuracy of this sixth order lambda
iterated formula is better than that of this sixth order formula for z<4.0 and vice
versa for 7=4.2. The errors in the q(z) values calculated by the sixth order formula
seem to be due to the inaccuracy of the formula, while the errors in the q(z) values
calculated by the sixth order lambda iterated formula seem to be due to the round off
errors of the computer. The accuracy of this sixth order formula for r=4.25 is +
1.5x107*9% and that of this sixth order lambda iterated formula for 7<4.25is +2.6X
1074%.

III. The Approximate Formula by Shinozuka

According to the method by Kourganoff (1952)¥, Shinozuka (1991)® obtained the
eighth order formula and the eighth order lambda iterated formula. He chose as a
sequence of m discrete 7 values the same values as Kourganoff (1952)®. He calcu-
lated the values of ¢;(z)’s and A;(z)’s also by the same formulae as Kourganoff
(1952)2. He solved the system of normal equations by the iterative method using the
initial value which was obtained by the direct method. The calculation was done with
a personal computer PC-9801 with double precision floating number. The program
was written in Quick BASIC.

He obtained the following values for the coefficients A,, A,, ==+ , Ag t

A, =0.7104460895988 ; A,= —0.2851827012016 ; A;=0.7187244221081
A,=—2.1564496388019 ; A;=05.4113602786473 ; As=—7.9073250106009
A,=5.8963645405263 ; A, = —1.6978115816004. &)

The accuracy of the calculation by the eighth order formula and the eighth order
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Fig. 2 Same as figure 1, but for the eighth order formula and the eighth order lambda
iterated formula obtained by Shinozuka (1991)9.

lambda iterated formula with these coefficients is shown in fiqure 2. This is obtained
by the same process as figure 1. As is shown in figure 2, the accuracy of this eighth
order lambda iterated formula is better than that of this eighth order formula for 7<
1.1 and vice versa for r=1.2. The accuracy of this eighth order formula for z=1.1
is +6.8x107%% and that of this eighth order lambda iterated formula for z=2.6 is &=
1.6x107%9%. This accuracy is better by more than a factor of 10 than that of the
formulae by Kourganoff (1952)%.

IV. The Approximate Formula Modified in the Present Study

In this paper, the coefficients obtained by Shinozuka (1991)% have been modified.
The modification is done according to the principle that the coefficients should
minimize the following value ME,

ME= %1 I q::al(Tr) —Qex('fr> l /Sv (32)

where qex (7) is the exact q(z) value and g (7) is the q(z) value calculated according
to the approximate formula (2) or Q). Hereafter, we represent the qe., (7) calculated
according to the eighth order formula by g (7) and the g, (7) calculated according to
the eighth order lambda iterated formula by qi (7).

The q(7) values listed in table 1 are chosen as the exact q(z) values. For the
eighth order formula, 29 values for =>2 are chosen as a sequence of 7. values, and for
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the eighth order lambda iterated formula, 41 values for <2 are chosen. Thus, the
coefficients obtained for the eighth order formula are different from those for the
eighth order lambda iterated formula.

The coefficients which minimize the ME value are obtained in the following
iterative way. First, the coefficients obtained by Shinozuka (1991)%® are chosen as
initial values, where his values are rounded off to 9 significant figures. Secondly, the
A, value minimizing the ME value is obtained by calculation of the ME value with
various A, values, where the other A; values are kept the same values. Thirdly, the
A, value minimizing the ME value is obtained in the same way as for the A, value,
where the new A, value is taken as the value of A,. Then, the A; value and so on
minimizing the ME value are obtained in the same way. The above process is
repeated until the A; value agrees with that obtained by the previous process. The
calculation is done also with a personal computer PC-9801 VM 2 with double precision
floating number.

The following values are obtained for the eighth order lambda iterated formula :

Ay=0.710446072 ; A, = —0.285182787 ; A, =0.718724424 ;

A,=—2.15644963 ; A;=5.41136028 ; As=—17.90732501 ;

A,=5.89636454 ; Ag=—1.69781157. @)
On the other hand, the following values are obtained for the eighth order formula :

Ay=0.71044609 ; A,=—0.285176651 ; A;=0.71872176 .

A,=—2.1564497 ; A;=5.41136028 ; A= —7.90733666 ;

1X1074~ o
(%)

5X107° -
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Fig. 3 Same as figure 1, but for the eighth order formula and the eighth order lambda
iterated formula obtained in this paper.
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A,;=5.89636447 ; Ag=—1.69781158. (34

The accuracy of the calculation by the eighth order formula and the eighth order
lambda iterated formula with these coefficients is shown in figure 3. This is obtained
by the same process as figure 1. As is shown in figure 3, the accuracy of this eighth
order lambda iterated formula is better than that of this eighth order formula for z=
2.2 and vice versa for 7=2.25. The accuracy of this eighth order formula for z=2.25
is +2.9%x107%% and that of this eighth order lambda iterated formula for 0.01=z=
2.251s +4.1x107%%. This accuracy is better by more than a factor of 3 than that of
the formulae by Shinozuka (1991)9.

V. Results and Discussion

In this paper, the coefficients obtained by Shinozuka (1991)® have been modified.
With the modified coefficients, the qi3(7) values give the q(z) values with the
accuracy better than £4.1X107%9% for 0.01=7=2.25, and the qs(z) values give q(7)
values with the accuracy better than +2.9X107°% for r=2.25. This accuracy is
better by more than 3 and 60 than that of the formulae by Shinozuka (1991)® and by
Kourganoff (1952)%, respectively. The use of these formulae do not increase the time
of calculation by more than 25% as compared with the formulae by Kourganoff
(1952)%.
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