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1 introduction

The Nevanlinna theory has contributed to give a lot of applications to ordi-
nary differential equations in the complex plane, see e.g., [9], [12]. Essence of
research topics of nonlinear complex differential equations are contained in
differential Riccati equations, and those of linear complex differential equa-
tions are contained in second order linear differential equations. Recently,
the difference counterpart of the lemma on the logarithmic derivatives was
obtained [3], [5], and then difference analogues of the Nevanlinna theory has
developed, see e.g., [6], [13]. In this paper, we are concerned with the differ-
ence Riccati equation

∆f(z) +
f(z)2 + A(z)

f(z)− 1
= 0, (1.1)

and the linear difference equation of second order

∆2y(z) + A(z)y(z) = 0, (1.2)
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where A(z) is a meromorphic function. For a function ϕ(z), the difference
operator ∆ is defined by ∆ϕ(z) = ϕ(z + 1) − ϕ(z). We define ∆n+1ϕ(z) =
∆(∆nϕ(z)), n = 1, 2, 3, . . . . We may assume that f(z) ≡ 1 is not a solution
to (1.1). The equations (1.1) and (1.2) are respectively represented

f(z + 1) =
A(z) + f(z)

1− f(z)

and
y(z + 2)− 2y(z + 1) + (A(z) + 1)y(z) = 0.

This paper is constructed as follows. In Section 2, we collect summation
formulas in the theory of difference equations and we give surveys of basic
properties of (1.1) and (1.2). Section 3 is concerned with the growth and
the value distribution of transcendental meromorphic solutions of (1.1) and
(1.2).

2 Basic properties

Difference equatons have been studied in many aspects see e.g., [4], [10], [11].
Some expositions consider difference equatons in real domains, or discrete do-
mains. Here, we mainly pay attention to considering meromprphic solutions
of (1.1) and (1.2) in the complex plane with a rational coefficient A(z).

2.1 Summation formulas

We define a symbol S which denotes a summation of f(z). Namely, ∆(Sf(z)) =
f(z). Basic ideas of summation can be found in e.g., [10, Pages 20–29], [11,
Pages 80–83]. Let Q(z) be an arbitrary periodic function of period 1. We
have S(∆f(z)) = f(z)+Q(z). We define z(0) = 1 and z(n) = z(z−1) . . . (z−
n + 1)/n!, n = 1, 2, . . . . Then for a polynomial b(z) =

∑M
`=0 b`z

`, there exist

b̃`, ` = 0, 1, . . . , n such that b(z) =
∑M

`=0 b̃`z(`). The summation of b(z) is

given by Sb(z) =
∑M

`=0 b̃`z(` + 1) + Q(z). We begin with a first order linear
homogeneous equation, see e.g., [10, Page 48], [11, Pages 115–116].

Lemma 2.1 Let R(z) be a rational function. We write R(z) in the form

R(z) = ρ

∏n
k=1(z − αk)∏m
j=1(z − βj)

,
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where ρ 6= 0, αk, k = 1, . . . , n and j = 1, . . . , m are complex numbers. The
first order linear homogeneous equation

y(z + 1) = R(z)y(z)

can be solved as

y(z) = Q(z)ρz

∏n
k=1 Γ(z − αk)∏m
j=1 Γ(z − βj)

. (2.1)

The lemma below states that for any rational function R(z) the summa-
tion SR(z) can be represented by Γ(z), Ψ(z) and their derivatives, where
Ψ(z) is the logarithmic derivative of Γ(z), i.e., Ψ(z) = Γ′(z)/Γ(z). See e.g.,
[11, Page 83]. We note that Γ(z) and Ψ(z) satisfies the following difference
equations respectively.

Γ(z + 1) = zΓ(z) and Ψ(z + 1) = Ψ(z) +
1

z
. (2.2)

Lemma 2.2 Let R(z) be a rational function. We write R(z) in the form

R(z) =
M∑

`=0

b`z
` +

N∑
j=1

nj∑

k=1

cj,k

(z − βj)k
.

Then the summation of R is represented

SR(z) = Q(z) +
M∑

`=0

b̃`z(` + 1) +
N∑

j=1

nj∑

k=1

(−1)k−1cj,k

(k − 1)!

dk−1

dzk−1
Ψ(z − βj). (2.3)

2.2 Passages between Riccati equations and linear equa-
tions

It is known that a differential Riccati equation

w′(z) + w(z)2 + A(z) = 0, (2.4)

and a linear differential equation of second order

u′′(z) + A(z)u(z) = 0, (2.5)

3



are closely related by the passage

w(z) = −u′(z)

u(z)
.

See e.g., [7, Pages 103–106].
We consider a passage between (1.1) and (1.2). For a nontrivial mero-

morphic solution y(z) of (1.2), we set

f(z) = −∆y(z)

y(z)
. (2.6)

Then f(z) satisfies the difference Riccati equation (1.1). In fact, from (2.6),

∆2y(z) = −(∆f(z))y(z)− f(z + 1)∆y(z) (2.7)

= −(∆f(z))y(z) + f(z + 1)f(z)y(z).

Combining (2.7) and (1.2), we have

− (∆f(z))y(z) + f(z + 1)f(z)y(z) + A(z)y(z)

= −(f(z + 1)− f(z))y(z) + f(z + 1)f(z)y(z) + A(z)y(z) = 0,

i.e.,
(−1 + f(z))f(z + 1) + f(z) + A(z) = 0,

which implies (1.1). See e.g., [4, Pages 100-101].
Conversely, if (1.1) possesses a meromorphic solution f(z), then a mero-

morphic solution y(z) of first order difference equation (2.6) satisfies (1.2).
In fact, from (2.7) and (1.1), we have

∆2y(z) = (−f(z + 1) + f(z) + f(z)f(z + 1))y(z)

=

(−A(z)− f(z)

1− f(z)
+

f(z)− f(z)2

1− f(z)
+

A(z)f(z) + f(z)2

1− f(z)

)
y(z)

= −A(z)(1− f(z))

1− f(z)
y(z) = −A(z)y(z),

which implies (1.2).

Example 2.1 Let a ∈ C, and set A(z) below in (1.1) and (1.2)

A(z) = − 2

(z + a)(z + a + 1)
.
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The functions

f1(z) =
1

z + a
and f2(z) = − 2

z + a

satisfy the difference Riccati equation (1.1). By Lemma 2.1, we obtain the
corresponding solutions y1(z) and y2(z) of the linear difference equation (1.2)

y1(z) = Q1(z)
Γ(z + a− 1)

Γ(z + a)
= Q1(z)

1

z + a− 1

and

y2(z) = Q2(z)
Γ(z + a + 2)

Γ(z + a)
= Q2(z)(z + a)(z + a + 1),

where Q1(z) and Q2(z) are periodic functions of order 1.
It is possible to construct a meromorphic solution of (1.1) other than

f1(z) and f2(z). Set y3(z) = y1(z) + y2(z). Then y3(z) is a meromorphic
solution of (1.2) and by (2.6) f3(z) = −∆y3(z)/y3(z) satisfies (1.1).

2.3 Difference Riccati equations

Let α1(z), α2(z) and α3(z) be distinct meromorphic solutions of the differ-
ential Riccati equation (2.4). Then (2.4) possesses a one parameter family
of meromorphic solutions (fc)c∈C, see e.g., [1, Pages 371–373]. The following
proposition is an analogue of this property.

Proposition 2.1 Suppose that (1.1) possesses three distinct meromorphic
solutions f1(z), f2(z) and f3(z). Then any meromorphic solution f(z) of
(1.1) can be represented by

f(z) =
f1(z)f2(z)− f2(z)f3(z)− f1(z)f2(z)Q(z) + f1(z)f3(z)Q(z)

f1(z)− f3(z)− f2(z)Q(z) + f3(z)Q(z)
, (2.8)

where Q(z) is a periodic function of period 1. Conversely, if for any periodic
function Q(z) of period 1 we define a function f(z) by (2.8), then f(z) is a
meromorphic solution of (1.1).

Proof Let hj(z), j = 1, 2, 3, 4 be distinct functions. We denote byR(h1, h2, h3, h4; z)
a cross ratio of hj(z), j = 1, 2, 3, 4

R(h1, h2, h3, h4; z) =
h1(z)− h3(z)

h1(z)− h4(z)

/
h2(z)− h3(z)

h2(z)− h4(z)
.

First we show that f(z) is a meromorphic solution of the difference Riccati
equation (1.1) if and only if R(z+1) = R(z), where R(z) = R(f1, f2, f3, f ; z).
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For the sake of simplicity, we write (A(z) + f(z))/(1 − f(z)) = L(f(z)).
Suppose that f(z) is a meromorphic solution of (1.1). Then

R(z + 1) =
L(f1(z))− L(f3(z))

L(f1(z))− L(f(z))

/
L(f2(z))− L(f3(z))

L(f2(z))− L(f(z))

=

(A(z)+1)(f1(z)−f3(z))
(1−f1(z))(1−f3(z))

(A(z)+1)(f1(z)−f(z))
(1−f1(z))(1−f(z))

(A(z)+1)(f2(z)−f(z))
(1−f2(z))(1−f(z))

(A(z)+1)(f2(z)−f3(z))
(1−f2(z))(1−f3(z))

= R(z).

Conversely, we suppose that R(z + 1) = R(z) so that

(A(z)+1)(f1(z)−f3(z))
(1−f1(z))(1−f3(z))

A(z)+f1(z)
1−f1(z)

− f(z + 1)

A(z)+f2(z)
1−f2(z)

− f(z + 1)

(A(z)+1)(f2(z)−f3(z))
(1−f2(z))(1−f3(z))

=
f1(z)− f3(z)

f1(z)− f(z)

f2(z)− f(z)

f2(z)− f3(z)
.

Hence we obtain f(z + 1) = (A(z) + f(z))/(1− f(z)), which concludes that
f(z) satisfies (1.1).

For any periodic function Q(z) of period 1, we define f(z) by

R(f1, f2, f3, f, z) = Q(z).

Then f(z) is represented by (2.8), and f(z) satisfies the difference Riccati
equation (1.1). ¤

This property is an analogue that a cross ratio of four distinct meromor-
phic solutions of a differential Riccati equation is a constant. See, e.g., [7,
Pages 108–109].

Let α1(z) and α2(z) be distinct rational solutions of the differential Ric-
cati equation (2.4). Two possibilities could be considered. One is that there
is no other meromorphic solution, see e.g., [1, Page 396], and another is that
there exist meromorphic solutions other than αj(z), j = 1, 2. If there exists
a rational solution α3(z) distinct from αj(z), j = 1, 2, then all meromorphic
solutions of (2.4) are rational solutions. If there exists a transcendental mero-
morphic solution w(z), then there is no rational solution other than αj(z),
j = 1, 2, see e.g., [1, Pages 393–394]. For difference Riccati equations, we
have the following

Proposition 2.2 Suppose that (1.1) possesses two distinct rational solutions
a1(z) and a2(z). Then there exists a meromorphic solution a3(z) distinct from
a1(z) and a2(z) so that any meromorphic solution f(z) of (1.1) is represented
in the form (2.8).
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Proof We set in (1.1)

f(z) =
a1(z)g(z)− a2(z)

g(z)− 1
. (2.9)

Then we have

g(z + 1) =
a1(z)− 1

a2(z)− 1
g(z).

By means of Lemma 2.1, we see that g(z) is a meromorphic function as in
the form (2.1) with a periodic function Q(z) of period 1. From (2.9), we
obtain a meromorphic solution a3(z) of (1.1). We choose a suitable Q(z) so
that a3(z) is distinct from a1(z) and a2(z). By Proposition 2.1, we conclude
that any meromorphic solution of (1.1) is represented in the form (2.8). ¤

2.4 Linear difference equations of second order

Let y1(z) and y2(z) be meromorphic solutions of (1.2), and let Q1(z) and
Q2(z) be periodic functions of period 1. Then the linear combination Q1(z)y1(z)+
Q2(z)y2(z) satisfies (1.2), which implies that the meromorphic solutions of
(1.2) forms a vector space over the field of periodic functions of period 1.
If there exist Q1(z) and Q2(z) periodic functions of period 1 such that
Q1(z)y1(z) + Q2(z)y2(z) = 0, then we call y1(z) and y2(z) linearly depen-
dent. Otherwise we call y1(z) and y2(z) linearly independent.

For functions f(z) and g(z), we denote by C(z) = C(f, g; z) the Casoratian
of f(z) and g(z), i.e.,

C(z) = C(f, g; z) =

∣∣∣∣
f(z) g(z)

∆f(z) ∆g(z)

∣∣∣∣ =

∣∣∣∣
f(z) g(z)

f(z + 1) g(z + 1)

∣∣∣∣ . (2.10)

It is known that f(z) and g(z) are linearly independent if and only if
C(f, g; z) 6≡ 0. See e.g., [11, Page 73].

Proposition 2.3 If y1(z) and y2(z) are meromorphic solutions of (1.2), then
the Casoratian C(y1, y2; z) satisfies a difference equation

∆C(z) = A(z)C(z). (2.11)

Conversely, we assume that y1(z)(6≡ 0) and y2(z) satisfy (2.11). If y1(z) is a
meromorphic solution of (1.2), then y2(z) is a meromorphic solution of (1.2).
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Proof First we assert that for any functions f(z) and g(z), we have

∆C(f, g; z) =

∣∣∣∣
f(z + 1) g(z + 1)
∆2f(z) ∆2g(z)

∣∣∣∣ . (2.12)

In fact,

∆C(f, g; z) =

∣∣∣∣
f(z + 1) g(z + 1)
f(z + 2) g(z + 2)

∣∣∣∣−
∣∣∣∣

f(z) g(z)
f(z + 1) g(z + 1)

∣∣∣∣

=

∣∣∣∣
f(z + 1) g(z + 1)

f(z + 2)− 2f(z + 1) g(z + 2)− 2g(z + 1)

∣∣∣∣ +

∣∣∣∣
f(z + 1) g(z + 1)

f(z) g(z)

∣∣∣∣

=

∣∣∣∣
f(z + 1) g(z + 1)
∆2f(z) ∆2g(z)

∣∣∣∣ .

If y1(z) and y2(z) are meromorphic solutions of (1.2), then by (2.12)

∆C(y1, y2; z) =

∣∣∣∣
y1(z + 1) y2(z + 1)
∆2y1(z) ∆2y2(z)

∣∣∣∣ =

∣∣∣∣
y1(z + 1) y2(z + 1)
−A(z)y1(z) −A(z)y2(z)

∣∣∣∣

= −A(z)

∣∣∣∣
y1(z + 1) y2(z + 1)

y1(z) y2(z)

∣∣∣∣ = A(z)C(y1, y2; z).

The first assertion follows.

We assume that y1(z) and y2 satisfy (2.11), i.e.,

∣∣∣∣
y1(z + 1) y2(z + 1)
∆2y1(z) ∆2y2(z)

∣∣∣∣ = A(z)

∣∣∣∣
y1(z) y2(z)

y1(z + 1) y2(z + 1)

∣∣∣∣ .

Then, we have

y1(z + 1)(∆2y2(z) + A(z)y2(z)) = y2(z + 1)(∆2y1(z) + A(z)y1(z)),

which gives the second assertion. ¤

The first assertion holds for n-th order linear homogeneous difference
equations in general. See, e.g., [11, Page 79]. This property is a counter part
that the Wronskian of linear independent meromorphic solutions of linear
homogeneous differential equation satisfies a linear homogeneous differential
equation of first order. See, e.g., [12, Pages 16–17 ].

Let u1(z) and u2(z) be linearly independent meromorphic solutions of
(2.5). Denoting c = W (u1, u2), we have u2(z) = h(z)u1(z) with h′(z) =
c/u1(z)2, see e.g., [2]. The following proposition is an analogue of this prop-
erty.
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Proposition 2.4 (i) Let y1(z) and y2(z) be linearly independent meromor-
phic solutions of (1.2), and let C(z) be the Casoratian of y1(z) and y2(z).
Then y2(z) is represented as y2(z) = g(z)y1(z), in which g(z) satisfies

∆g(z) =
C(z)

y1(z + 1)y1(z)
. (2.13)

(ii) Let y1(z) be a nontrivial meromorphic solution of (1.2), and let C(z)
be a meromorphic solution of (2.11). If g(z) satisfies (2.13), then y2(z) =
g(z)y1(z) is a meromorphic solution of (1.2).

Proof (i) From (2.10), y2(z) satisfies the following difference equation of
first order

y2(z + 1)− y1(z + 1)

y1(z)
y2(z) =

C(z)

y1(z)
.

Write y2(z) = g(z)y1(z). Then

g(z + 1)y1(z + 1)− y1(z + 1)

y1(z)
g(z)y1(z) =

C(z)

y1(z)
,

which implies (2.13).

(ii) Define g(z) = y2(z)/y1(z). Then we have

∆2y2(z) = g(z + 2)y1(z + 2)− 2g(z + 1)y1(z + 1) + g(z)y1(z). (2.14)

Using (2.13) and (2.11), we have

g(z + 1) = g(z) +
C(z)

y1(z + 1)y1(z)
(2.15)

and

g(z + 2) = g(z + 1) +
(A(z) + 1)C(z)

y1(z + 2)y1(z + 1)
(2.16)

From (1.2), y1(z+2) = 2y1(z+1)−(A(z)+1)y1(z). Thus we combine (2.14),
(2.15) and (2.16),

∆2y2(z) = g(z + 1)(y1(z + 2)− 2y1(z + 1)) +
(A(z) + 1)C(z)

y1(z + 1)
+ g(z)y1(z)

=

(
g(z) +

C(z)

y1(z + 1)y1(z)

)
(−(A(z) + 1)y1(z))

+
(A(z) + 1)C(z)

y1(z + 1)
+ g(z)y1(z)

= −A(z)g(z)y1(z) = −A(z)y2(z),
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which shows the assertion. ¤

Suppose that A(z) is a ratonal function in (1.1) and (1.2) and suppose
that (2.11) admits a rational solution C(z). Then Proposition 2.4 implies
that if there exists a rational solution y1(z) of (1.2) then there exists a mero-
morphic solution y2(z) which is independent of y1(z). Hence under these
conditions (1.1) has two distinct meromorphic solutions corresponding to
y1(z) and y2(z).

Example 2.5 In (1.1) and (1.2), we set

A(z) = − 2(55z2 + 635z + 1842)

(z + 2)(z + 3)(z + 4)(z + 5)
.

Then

f1(z) =
−11z + 58

(z + 2)(z + 4)

is a meromorphic solution of (1.1). The corresponding solution y1(z) of (1.2)
satisfies (2.6), i.e.,

y1(z + 1) =
(z + 6)(z + 11)

(z + 2)(z + 4)
y1(z).

By Lemma 2.1, we have

y1(z) = Q1(z)
Γ(z + 6)Γ(z + 11)

Γ(z + 2)Γ(z + 4)
= Q1(z)(z + 4)(z + 5)

10∏

k=2

(z + k),

where Q1(z) is a periodic function of period 1. Let C(z) be a meromorphic
solution of (2.11), i.e.,

C(z + 1) =
(z − 9)(z + 6)2(z + 11)

(z + 2)(z + 3)(z + 4)(z + 5)
C(z).

By Lemma 2.1, we obtain

C(z) = Q2(z)
Γ(z − 9)Γ(z + 6)2Γ(z + 11)

Γ(z + 2)Γ(z + 3)Γ(z + 4)Γ(z + 5)

= Q2(z)(z + 4)(z + 5)

∏10
k=3(z + k)∏1

k=−9(z + k)
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where Q2(z) is a periodic function of period 1. We will obtain a meromorphic
solution y2(z) = y1(z)g(z) with Q1(z) ≡ 1 and Q2(z) ≡ 1 by (2.13), i.e.,

∆g(z) =
C(z)

y1(z + 1)y1(z)
=

1

(z + 6)
∏11

k=−9(z + k)
=

α6

(z + 6)2
+

11∑

k=−9

βk

z + k
,

where α6 and βk, k = −9,−8, . . . , 10, 11 are nonzero constants. By means of
Lemma 2.2, we obtain

g(z) = Q(z) + α̃6Ψ
′(z + 6) +

11∑

k=−9

β̃kΨ(z + k),

where Q(z) is a periodic function of period 1, and α̃6 and β̃k, k = −9,−8, . . . , 10, 11
are nonzero constants. Using (2.2), we see that g(z) is represented by

g(z) = Q(z) + R1(z) + αΨ′(z) + βΨ(z), (2.17)

where R1(z) is a rational function and α, β are constants. Set Q(z) ≡ 0
in (2.17) and we put y2(z) = (R1(z) + αΨ′(z) + βΨ(z))y1(z). Then y2(z)
is linearly independent of y1(z) and a transcendental meromorphic function.
The corresponding solution f2(z) of (1.1) to y2(z) defined by (2.6) is also a
transcendental meromorphic function.

3 Growth and Value distribution

In this section, we use the notations of the Nevanlinna theory, see e.g., [9],
[12]. Let m(r, h), N(r, h) and T (r, h) denote the proximity function, the
counting function and the characteristic function of a meromorphic func-
tion h(z) respectively. The growth order σ(h) of h(z) is defined by σ(h) =
lim supr→∞ log T (r, h)/ log r. It is known that when treating the growth of
meromorphic solutions of complex differential equations, the basic task is to
find out their maximal growth, while in the case of difference equations, suit-
able solutions may grow arbitrarily fast, hence the basic task here is to find
the minimal growth. Hence, we pay attention to transcendental meromorphic
solutions of (1.1) and (1.2) having small order of growth.

Theorem 3.1 Suppose that A(z) is a rational function in (1.1) and suppose
that (1.1) possesses a rational solution a(z). Then (1.1) has no transcendental
meromorphic solutions of order less than 1/2.
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Proof Assume that (1.1) has a transcendental meromorphic solution
f(z) of order less than 1/2. We define k(z) from

f(z) = a(z) +
1

α(z)k(z)
, with α(z) =

a(z − 1)− 1

A(z − 1) + 1
.

We note that T (r, k) = T (r, f) + O(log r) and σ(k) = σ(f). From (1.1), we
have a difference equation of k(z)

k(z + 1) = B(z)k(z) + 1, with B(z) =
(a(z)− 1)(a(z − 1)− 1)

A(z − 1) + 1
. (3.1)

We assert that k(z) has finitely many poles. We take r0 so large that zeros
and poles of the rational function B(z) are in |z| < r0. If we assume that
k(z) has infinitely many poles, there is a pole z0 of k(z) such that z0 is not in
|z| < r0. Hence, depending on the placement of z0 in |z| > r0, we conclude
from (3.1) that k(z) has poles either in z0 + n, n = 0, 1, 2 . . . or in z0 − n,
n = 0, 1, 2 . . . . Hence for a constant H0 > 0, we have n(r, k) ≥ H0r. Thus
we have for some constant H

Hr ≤ N(r, k) ≤ T (r, k),

which implies that σ(f) = σ(k) ≥ 1, a contradiction. We choose a rational
function b(z) such that k̃(z) = b(z)k(z) is transcendental entire. From (3.1),
k̃(z) satisfies a first order nonhomogeneous difference equation with polyno-
mial coefficients. From this we obtain a second order homogeneous difference
equation of the form

P2(z)∆2k̃(z) + P1(z)∆k̃(z) + P0(z)k̃(z) = 0, (3.2)

where Pj(z), j = 0, 1, 2 are polynomials. Write pj, j = 0, 1, 2 degrees of
Pj(z), j = 0, 1, 2 respectively. By means of an analogue of the Wiman–
Valiron theory for the difference operator [8], at least one of the p1 − p2 + 1,
(p0 − p2 + 2)/2 or p0 − p1 + 1 is a positive rational number less than 1/2,
which is impossible. ¤

Theorem 3.2 Suppose that A(z) is a rational function in (1.2). Then (1.2)
has no transcendental meromorphic solutions of order less than 1/2. Further
we assume that (1.2) possesses a rational solution. Then every transcendental
meromorphic solution of (1.2) has order of at least 1.

Proof Assume that (1.2) admits a transcendental meromorphic y(z) of
order less than 1/2. We discuss the similar arguments in the proof of The-
orem 3.1. Since A(z) is a rational function, there is no zeros and poles in
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|z| > r0 for sufficiently large r0. If we assume y(z) admits infinitely many
poles, then there is a pole z0 of y(z) which is not contained in |z| ≤ r0. Hence,
depending on the placement of z0 in |z| > r0, we conclude from (1.2) that
y(z) has poles either in z0 + pn, n = 0, 1, 2 . . . or in z0 − pn, n = 0, 1, 2 . . . ,
where {pn} is a sequence of positive integers with 1 ≤ pn+1 − pn ≤ 2. This
implies that N(r, y) ≥ Kr for some constant K > 0, which yields a con-
tradiction. We choose a rational function c(z) such that ỹ(z) = c(z)y(z) is
transcendental entire. From (1.2), ỹ(z) satisfies the second order difference
equation with polynomial coefficients of the form (3.2). Similarly to the proof
of Theorem 3.1, we see that the assumption yields a contradiction.

We now suppose that (1.2) possesses a rational solution η(z). By Propo-
sition 2.4, for any transcendental meromorphic solution y(z) of (1.2), we can
write y(z) = η(z)g(z), where g(z) is a transcendental meromorphic function
satisfying

∆g(z) =
C(z)

η(z + 1)η(z)
,

where C(z) = C(η, y; z). If C(z) is a rational function, then by Proposition 2.4
g(z) is a meromorphic function of the form (2.3) since C(z)/η(z + 1)η(z) is
a rational function. We have that T (r, Γ(z)) = 1

π
r log r(1 + o(1)) and hence

T (r, Ψ(z)) = r(1 + o(1)), see e.g., [16]. Hence T (r, y) = T (r, g) + O(log r) ≥
K1r for some positive constant K1, the assertion holds in this case. If C(z)
is a transcendental meromorphic function, by Yanagihara’s inequality [15,
Page 311 (2.4)] we have for large r

T (r,C(z)) = T (r, ∆g) + O(log r) ≤ T (r, g) + T (r, g) + O(log r)

≤ 2T (r + 1, g) + T (r, g) + O(log r) ≤ 3T (2r, g) + O(log r),

where g(z) = g(z + 1). Since A(z) is a rational function, by Proposition 2.3
C(z) is written in the form (2.1). Using the growth properties of the Γ
function and periodic functions if need, we have T (r,C(z)) ≥ K2r holds
for large r, where K2 is a positive constant. Hence there exists a positive
constant K3 such that T (r, y) ≥ K3r for large r. This concludes that σ(y) is
at least 1. ¤

We note that a linear difference equation with polynomial coefficients of
order n ≥ 3 may possess a transcendental entire solution of order of growth
less than 1/2, see e.g., [8].

Finally, we discuss relations between transcendental meromorphic solu-
tions and rational solutions of Riccati equations.
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Let α(z) be a rational function. Suppose that (2.4) possesses a tran-
scendental meromorphic solution w(z). If α(z) is not a solution of (2.4),
then w(z) − α(z) has infinitely many zeros, see [14]. Concerning the coun-
terpart of the difference Riccati equation (1.1), the corresponding property
holds. We suppose that (1.1) possesses a transcendental meromorphic so-
lution f(z). Then f(z) − a(z) has infinitely many zeros unless a rational
function a(z) solves (1.1), see [13]. We consider the case α(z) is a mero-
morphic solution of (2.4). Set w(z) = v(z) + α(z) in (2.4). Then we have
v′(z) = −v(z)(v(z)+2α(z)). We see that zeros of v(z) must be poles of α(z),
which implies that v(z) has only finitely many zeros. Hence, we conclude
that w(z)− α(z) has finitely many zeros.

We assert that in the difference case the analogue of this property does
not always hold. Suppose that (1.1) has a rational solution a(z). There may
exist transcendental meromorphic solution f1(z) such that f1(z) − a(z) ad-
mits infinitely many zeros, and there may exist transcendental meromorphic
solution f2(z) such that f2(z)− a(z) has only finitely many zeros. Below we
give an example in which both cases occur.

Example 3.1 We consider the following difference Riccati equation

∆f(z) +
f(z)2 + A(z)

f(z)− 1
= 0, with A(z) = − z4 − z2 + 2z + 3

(z2 + z − 1)(z2 + 3z + 1)
,

which possesses a rational solution

a(z) =
z2 − z + 1

z2 + z − 1
.

We set

f(z) = a(z) +
1

α(z)

1

k(z)
with α(z) =

a(z − 1)− 1

A(z − 1) + 1
= −z2 + z − 1

2z2
.

Then k(z) satisfies a nonhomogeneous first order difference equation

k(z + 1) =
z − 1

z2
k(z) + 1 (3.3)

with the associated homogeneous difference equation

k0(z + 1) =
z − 1

z2
k0(z). (3.4)

We write 1/Γ(z) = γ(z). It is known that γ(z) is a transcendental entire
function, see e.g., [12]. The function k0(z) = γ(z)/(z − 1) solves (3.4). Since
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a rational function ϕ(z) = z/(z − 1) is a solution of (3.3), general solutions
k(z) of (3.3) can be written

k(z) = Q(z)k0(z) + ϕ(z),

where Q(z) is a periodic function of period 1. If we choose an entire periodic
function in place of Q(z), then k(z) has at most one pole. In this case, f(z)−
a(z) has only finitely many zeros. On the other hand, taking meromorphic
periodic function having infinitely many poles for Q(z), we have that f(z)−
a(z) has infinitely many zeros.
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