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Abstract

In this paper we treat transcendental meromorphic solutions of some algebraic differential
equations. We consider the number of distinct transcendental meromorphic solutions.
Algebraic relations between meromorphic solutions and comparisons of the growth of
transcendental meromorphic solutions are also discussed.
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1. Introduction

The binomial differential equation

(y′)n = R(z, y),

where n is a positive integer and R(z, y) is a rational function in z and y, has
been studied under the assumption that it has a transcendental meromorphic
solution y in the complex plane (for example, Yosida [18], Laine [10]). The
result due to Steinmetz [14], Bank and Kaufman [1] states that by a suitable
Möbius transformation v = (αy + β)/(γy + δ), αδ − βγ 6= 0, the binomial
equation is classified into the following six simple differential equations:

v′ = a2(z)v2 + a1(z)v + a0(z) (I)
(v′)2 = a(z)(v − b(z))2(v − τ1)(v − τ2) (II)
(v′)2 = a(z)(v − τ1)(v − τ2)(v − τ3)(v − τ4) (III)
(v′)3 = a(z)(v − τ1)2(v − τ2)2(v − τ3)2 (IV)
(v′)4 = a(z)(v − τ1)2(v − τ2)3(v − τ3)3 (V)
(v′)6 = a(z)(v − τ1)3(v − τ2)4(v − τ3)5 (VI)
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where τ1, . . . , τ4 are distinct constants and aj(z)(6≡ 0), j = 0, 1, 2, a(z),
b(z) are rational functions. The result cited above of Steinmetz (Theorem
2 in [14]) was generalized to the case when R(z, y) is rational in y with
meromorphic coefficients by v. Rieth [13] and He-Laine [9].

Throughout this paper ‘meromorphic’ means ‘meromorphic in the com-
plex plane’ and we use the standard notation of the Nevanlinna theory of
meromorphic functions (for example, [6], [11], [12]).

We consider the following three problems for the equations (II) especially
when b(z) is a constant, say (II∗), and (III). The equations (II∗) and (III)
are treated in Section 2 and in Section 3 respectively.

The first problem is to classify the equations by the number of tran-
scendental meromorphic solutions. The differential equations (I)–(VI) do
not always admit transcendental meromorphic solutions. It depends on the
coefficients of the equations. We investigate how many transcendental mero-
morphic solutions the differential equations have and under what conditions
they have an infinite number of transcendental meromorphic solutions. We
have some results for the Riccati equation (I) concerning numbers of mero-
morphic solutions, for example, [2], or [11] Chapter 9. Answers of this
problem for (II∗) are given in Corollary to Theorem 2.2 (a), (b) and those
for (III) are given in Corollary to Theorem 3.1 (a), (b).

The second problem is to find algebraic relations between meromorphic
solutions. For the case of Riccati equation (I), four distinct solutions f1,
f2, f3, f4 of (I) satisfy R(f1, f2, f3, f4) = c, for a constant c, where R is a
cross ratio of four elements (for example, [8], §4.2). We shall give an answer
for (II∗) by showing Theorem 2.1, and give an answer for (III) by showing
Theorem 3.1 (iii).

The third problem is to compare the growth of transcendental meromor-
phic solutions. There are many results on the growth of transcendental
meromorphic solutions of these six differential equations (for example, [1],
[14], [15]). The fact proved in [1] and in [15] is that for the transcendental
meromorphic solutions f of (II∗) or (III), the order of f is a positive integral
multiple of 1/2, which is dependent on the coefficients of the equation. For
example (cf. [15], Satz 1) for any solution of (f ′)2 = A(z)(f2 − 1) the order
of f is equal to 1 + d/2 when d ≥ −1, where

A(z) = c1z
d + c2z

d−1 + · · · for z →∞, c1 6= 0.

This says that for given (fixed) coefficients transcendental meromorphic so-
lutions f and g of the equation have the same order of growth.

We shall give more detailed estimates of growth of transcendental mero-
morphic solutions of (II∗) by showing Theorem 2.1, and those of solutions
of (III) by showing Corollary to Theorem 3.1 (c).
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2. Results for the equation (II)

This section devotes to answer the problems, which we posed in Section 1,
for the equation (II) when b(z) is a constant, say (II∗). The equation (II∗)
is changed to

(f ′)2 = A(z)(f2 − 1),(1)

where A(z) = (b− τ1)(b− τ2)a(z), by the linear transformation

f = 2(τ2 − b)(v − τ1)/((τ2 − τ1)(v − b))− 1.

The equation (1) is more appropriate than (II∗) for us to investigate its solu-
tions. We denote by S(A) the set of transcendental meromorphic solutions
of (1) for a given rational function A, and denote by #S(A) the number of
functions in S(A).

In this section we prove the following theorems and corollaries:

Theorem 2.1. Suppose that the differential equation (1) possesses distinct
transcendental meromorphic solutions f and g. Then there is a constant c
such that

(2) f2 + 2cfg + g2 = 1− c2.

Conversely, if there are two nonconstant meromorphic functions f and g
satisfying (2), then the following relation holds:

(3) (f ′)2/(f2 − 1) = (g′)2/(g2 − 1),

so that if f is a solution of (1), so is g.

Corollary to Theorem 2.1. Suppose that the differential equation (1)
possesses transcendental meromorphic solutions f and g. Then we have

T (r, g) = T (r, f) + O(1).(4)

Theorem 2.2. Suppose that the differential equation (1) admits at least
three transcendental meromorphic solutions. Then we have:

(i) There is a rational function α(z) such that A(z) = α(z)2.

(ii) We can write α(z) in (i) as a decomposition of partial fractions

α(z) = p(z) +
∑n

j=1 kj(z − τj)−1,(5)
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where p(z) is a polynomial not identically equal to 0, kj (j = 1, · · · , n)
are integers, and τj (j = 1, . . . , n) are distinct constants. Moreover,
for any transcendental meromorphic solution f , there exists a constant
C ∈ C such that

f(z) = cosh
( ∫ z

0
p(z)dz +

n∑

j=1

log(z − τj)kj + C
)
.(6)

Corollary to Theorem 2.2. We have

(a) Suppose that the differential equation (1) admits at least three transcen-
dental meromorphic solutions. Then #S(A) = ∞.

(b) For a rational function A, there are three possibilities on the number of
transcendental meromorphic solutions of (1): #S(A) = 0, #S(A) = 2
or #S(A) = ∞.

We note that any nonconstant meromorphic solution f of (1) satisfies the
second order linear differential equation

(7) f ′′ − (A′/2A)f ′ −Af = 0.

In fact, differentiating (1), we have 2f ′f ′′ = A′(f2− 1) + 2Aff ′. Combining
this and (1), we obtain (7) since f ′ 6= 0.

For the proofs of Theorems 2.1 and 2.2, we need some lemmas given
below.

Lemma 2.3 ([4], Theorem 1). Let F and G be meromorphic functions.
F and G satisfy F 2 +G2 = 1 if and only if there is a meromorphic function
β(z) such that

F = 2β/(1 + β2) and G = (1− β2)/(1 + β2).

Lemma 2.4. Let f be a nonconstant meromorphic function and put

(8) R(z) = (f ′)2/(f2 − 1).

If R(z) has poles, any pole of R(z) is of order at most 2.

Proof of Lemma 2.4 Given a pole z0 of R(z), z0 is either a pole of f , a
zero of f(z) − 1 or a zero of f(z) + 1. If z0 is a pole of f , then a standard
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pole order comparison of (8) implies that R(z) has a double pole at z0. By
a similar reasoning, if f(z) = ±1 +

∑∞
j=k αj(z − z0)j around z0, then R(z)

is regular at z0 when k ≥ 2, while R(z) has a simple pole at z0 when k = 1.

Lemma 2.5. Suppose that a meromorphic function α is written in a neigh-
borhood of a0 as

α(z) = k/(z − a0) + h(z), (k 6= 0),(9)

where h(z) is regular at a0. Then, the differential equation

(10) w′′ − (α′(z)/α(z))w′ − α2(z)w = 0

has a single-valued meromorphic solution in a neighborhood of a0 if and only
if k is equal to an integer.

Proof of Lemma 2.5 From (9), it is easy to see that a0 is a regular-singular
point for (10) (see [7], Satz 3.2). The corresponding indicial equation at a0

is
ρ(ρ− 1) + ρ− k2 = ρ2 − k2 = 0

and its solutions are ρ = k and ρ = −k. Therefore, it is easy to see that
(10) has a nonconstant meromorphic solution in a neighborhood of a0 if and
only if k is equal to an integer. ¤

Proof of Theorem 2.1 Assume that f and g are transcendental meromor-
phic solutions to (1), namely

(11) (f ′)2 = A(f2 − 1) and (g′)2 = A(g2 − 1).

Further it follows from (7) that

(12) f ′′ − (A′/2A)f ′ −Af = 0 and g′′ − (A′/2A)g′ −Ag = 0.

Add two equations in (12), and then multiply the obtained equality by
2(f ′ + g′)/A to obtain

2(f ′ + g′)(f ′′ + g′′)
A

− A′

A2
(f ′ + g′)2 = 2(f + g)(f ′ + g′),

from which we have ((f ′ + g′)2/A)′ = ((f + g)2)′ so that

(13) (f ′ + g′)2/A = (f + g)2 + c′,

where c′ is a constant. From (11) and (13) we eliminate A, f ′ and g′ to
obtain (2), where c = 1 + c′/2. Next we suppose that two nonconstant
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meromorphic functions f and g satisfy (2). When c2 = 1, we have f = ±g
and so the relation (3) holds. We consider the case c2 6= 1. Write (2) as

(14) (f + cg)2 + (1− c2)g2 = 1− c2.

Differentiating the both sides of (14), we have

(15) (f ′ + cg′)(f + cg) + (1− c2)g′g = 0.

Combining (14) and (15), we obtain

(16) (g′)2/(1− g2) = (f ′ + cg′)2/(1− c2)g2.

Similarly we obtain by symmetry

(17) (f ′)2/(1− f2) = (g′ + cf ′)2/(1− c2)f2.

We can write (15) as f(f ′+ cg′) = −g(g′+ cf ′), so that the right-hand sides
of (16) and (17) are equal, which results in the assertion. ¤

Proof of Corollary to Theorem 2.1 If c2 = 1, then f = ±g and we have
T (r, f) = T (r, g). Hence we only treat the case c2 6= 1. From (2), we have

(f/g)2 + 2cf/g + 1 = (1− c2)/g2,

from which we have by Nevanlinna’s first fundamental theorem

2T (r, g) = 2T (r, f/g) + O(1).

Changing roles of f and g, and using Nevanlinna’s first fundamental theorem
we obtain the relation

2T (r, f) = 2T (r, g/f) + O(1) = 2T (r, f/g) + O(1).

Combining the two relations above, we obtain (4). ¤

Proof of Theorem 2.2 (i) By the hypothesis of this theorem and by Theo-
rem 2.1, there are transcendental meromorphic functions f and g satisfying

f2 + 2cfg + g2 = 1− c2 (c2 6= 1),

from which we have

f2 + ((cf + g)/
√

1− c2)2 = 1.

By Lemma 2.3, there is a meromorphic function β(z) such that

f = 2β/(1 + β2).
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We see that β(z) is transcendental since so is f . Hence we see that

A(z) =
(f ′)2

f2 − 1
= −

(
2β′

1 + β2

)2

=
(

2iβ′

1 + β2

)2

.

That is to say, A(z) = α(z)2 where α(z) = (2iβ′)/(1 + β2). Since A(z) is a
rational function, α(z) must be a rational function. ¤

Proof of Theorem 2.2 (ii) By Theorem 2.2 (i), we can write A(z) = α(z)2

for a rational function α(z). If α(z) has a pole, then the pole is simple by
Lemma 2.4 and the residue at the pole must be an integer by Lemma 2.5.
Hence we can write α(z) in the following form:

α(z) = p(z) +
∑n

j=1 kj(z − τj)−1,

where p(z) is a polynomial, n is the number of poles of α(z), kj (j = 1, · · · , n)
are integers, and τj (j = 1, . . . , n) are distinct constants. Put here ζ(z) =∫ z
0 p(t)dt. Then the meromorphic functions

f1(z) = eζ(z)
n∏

j=1

(z − τj)kj and f2(z) = e−ζ(z)
n∏

j=1

(z − τj)−kj ,(18)

which are linearly independent, satisfy the linear differential equation (10).
Since any solution f(z) of (1) solves (10), f(z) is written by a linear combi-
nation of f1 and f2, say

f(z) = C1f1(z) + C2f2(z),(19)

where C1 and C2 are constants. As f ′1(z) = α(z)f1(z), f ′2(z) = −α(z)f2(z)
and f1f2 = 1 from (18), by substituting (19) into (1), we obtain that C1C2 =
1/4. Therefore we see that for some C ∈ C, f(z) is represented in the form

f(z) = cosh
(
ζ(z) +

n∑

j=1

log(z − τj)kj + C
)
.

It is immediately concluded that if p(z) ≡ 0, then meromorphic solutions
to (1) are rational functions, which is a contradiction. Hence p(z) 6≡ 0, the
assertion follows. ¤

Proof of Corollary to Theorem 2.2 (a): It follows from Proof of Theo-
rem 2.2 (ii) if A = α2, where α satisfies (5), then a meromorphic function of
the form (6) is a solution of (1). This implies that S(A) is an uncountable
set when p(z) 6≡ 0. This implies that if (1) possesses at least three distinct
transcendental meromorphic solutions, then #S(A) = ∞.

(b): It is clear that if f is a transcendental meromorphic solution of
(1), then −f is also a transcendental meromorphic solution of (1). By (a),
#S(A) ≥ 3 implies #S(A) = ∞. Therefore we have proved (b). ¤
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Remark 2.6 We mention a condition which implies S(A) is an empty
set: If A has at least one pole of order not less than 3, then #S(A) = 0.
This is a direct consequence of Lemma 2.4.

We showed (a) of Corollary to Theorem 2.2 by means of Theorem 2.2.
We mention here that we get the same result by only using the algebraic
relation (2) and the relation (4). In fact, by the hypothesis of this Corollary,
there are two meromorphic functions f and g in S(A) satisfying

f2 + 2cfg + g2 = 1− c2 (c2 6= 1),

from which we have

f2 + ((cf + g)/
√

1− c2)2 = 1.

This shows that (cf + g)/
√

1− c2 ∈ S(A) by (3) in Theorem 2.1 and (4)
since f ∈ S(A). Put

h = (cf + g)/
√

1− c2 and F = γf + δh,

where γ and δ are constants satisfying γ2 + δ2 = 1. Then

(20) f2 + h2 = 1 and ff ′ = −hh′.

Now, we are going to prove that F ∈ S(A). In fact, by (20)

(F ′)2 = γ2(f ′)2 + 2γδf ′h′ + δ2(h′)2(21)
= γ2A(f2 − 1) + δ2A(h2 − 1)− 2γδf(f ′)2/h

= A(γ2f2 + δ2h2 − 1) + 2γδAfh

= A((γf + δh)2 − 1)

since (f ′)2/h2 = (h′)2/f2 = −A by (20) and f, h ∈ S(A). It follows from
(21) that F = γf +δh is a meromorphic solution of (1) and by (4), γf +δh ∈
S(A). This proves the assertion.

3. Results for the equation (III)

In this section we are concerned with the differential equation of the type
(III) in Section 1. It will be seen below that solutions of the equation (III)
are closely connected with the Weierstrass ℘-function. We choose and fix a
℘-function satisfying

(℘′)2 = 4℘3 − g̃2℘− g̃3,(22)

where g̃2, g̃3, are constants satisfying 27g̃2
3 − g̃3

2 6= 0. For the sake of brevity
we put G(x) = 4x3− g̃2x− g̃3, and we denote by e1, e2, e3 the distinct roots
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of G(x) = 0. For any solution v of (III), we set

f(z) =
α

v(z)− τ4
− β with α = −(τ1 − τ4)(τ2 − τ4)(τ3 − τ4)

4
,

β =
1
12

(
2τ4(τ1 + τ2 + τ3)− (τ1τ2 + τ2τ3 + τ3τ1)− 3τ3

4

)
.

Then the equation of type (III) can be translated into the following form:

(f ′)2 = A(z)(4f3 − g̃2f − g̃3) = A(z)G(f),(23)

where A(z) 6≡ 0 is a rational function. We denote by T(A) the set of tran-
scendental meromorphic solutions of (23) for a given rational function A,
and denote by #T(A) the number of functions in T(A).

The purpose of this section is to show the following theorem and corollary:

Theorem 3.1. Suppose that the equation (23) admits two transcenden-
tal meromorphic solutions f and g such that f 6= L(g) for some Möbius
transformation L such that L(z) 6≡ z. Then we have

(i) There exists a polynomial a(z) such that A(z) = a′(z)2.

(ii) Any f(z) ∈ T(A) can be written by

f(z) = ℘(a(z) + c), c ∈ C,(24)

where ℘ is the Weierstrass ℘ function given in (22).

(iii) Let u(z) and v(z) denote arbitrary distinct transcendental meromorphic
solutions of (23). Then there exists a constant d0 ∈ C, such that
U = u− d0 and V = v − d0 satisfy an algebraic relation

U2V 2 −G2UV −G1(U + V )−G0 = 0,(25)

where G0, G1 and G2 are constants.

Conversely if transcendental meromorphic functions U and V satisfy
(25), then we have

(U ′)2/K(U) = (V ′)2/K(V ),(26)

where K(x) is a polynomial of degree 3, expressed as

K(x) = 4x3 + ((G0 + G2
2)/G1)x2 + 2G2x + G1.(27)

Corollary to Theorem 3.1. We have
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(a) If the equation (23) admits two transcendental meromorphic solutions
f and g such that f 6= L(g) for some Möbius transformation L which
is not identity, then #T(A) = ∞.

(b) For a rational function A, there are three possibilities on the number of
T(A): #T(A) = 0, #T(A) = 4 or #T(A) = ∞.

(c) For any transcendental meromorphic solutions f and g of (23), we have

T (r, g) = T (r, f) + S(r),(28)

where S(r) is small with respect to T (r, f) and T (r, g).

We need the following results due to Bank and Kaufman [1, Lemma 5],
and due to Valiron [16].

Lemma 3.2. Let H(w) be a polynomial having constant coefficients, and
let w(z) be a nonconstant elliptic function of elliptic order q, which is a
solution of the differential equation (w′)q = H(w). Then we have

(a) If c0 and c1 are complex numbers satisfying cq
1 = H(c0), then there

exists a complex number ζ such that w(ζ) = c0 and w′(ζ) = c1.

(b) Any solution of the differential equation (w′)q = H(w) which is mero-
morphic and nonconstant in a region of the plane must be of the form
w(z + C) where C is a constant.

The lemma given below is also needed for Proof of Theorem 3.1.

Lemma 3.3. Suppose that (23) has distinct transcendental meromorphic
solutions f and g. If f and g have a common pole z0, then ϕ := f − g does
not have a zero at z0.

Proof of Lemma 3.3 We write A in a neighborhood of z0 as

A(z) = RA(z − z0)λ + O(z − z0)λ+1, RA 6= 0,(29)

where λ is an integer. Let µf and µg denote orders of poles of f and g at z0

respectively. From (23), −2(µf +1) = λ−3µf , that is, µf = 2+λ. Similarly
we have µg = 2 + λ. For the sake of brevity we write µf = µg = µ.

Write f and g in a neighborhood of z0 as

f(z) =
Rf

(z − z0)µ
+ O(z − z0)−(µ−1), Rf 6= 0,(30)

g(z) =
Rg

(z − z0)µ
+ O(z − z0)−(µ−1), Rg 6= 0.(31)

10



Substituting these representations into (23) and comparing the coefficients
of terms (z − z0)−2(µ+1), we obtain

Rf = Rg = µ2/4RA.(32)

It follows from (23) that

(ϕ′/ϕ)(f ′ + g′) = A
(
4(f2 + fg + g2)− g̃2

)
.(33)

Assume that ϕ has a zero at z0 of order σ > 0. We compare the coef-
ficients of (z − z0)−(µ+2) in the Laurent expansions in both sides of (33).
Using (32), we obtain

σ

(
− µ3

4RA
− µ3

4RA

)
= RA

(
4
( µ4

16R2
A

+
µ4

16R2
A

+
µ4

16R2
A

))
,

that is, −σ = 3µ/2, which is absurd. We have thus proved Lemma 3.3. ¤

Furthermore we mention a remark below to state some basic properties
of solutions of (23).

Remark 3.4 (A) Every solution f of (23) satisfies

f ′′ =
A′(z)
2A(z)

f ′ +
A(z)

2
(12f2 − g̃2).(34)

Moreover, if f and g are distinct solutions of (23), then we have

ϕ′′ − A′(z)
2A(z)

ϕ′ − 6A(z)(f + g)ϕ = 0, or(35)

ϕ′′

ϕ
− A′(z)

2A(z)
ϕ′

ϕ
= 6A(z)(f + g),(36)

where ϕ := f − g.
(B) Let f be a transcendental meromorphic solution of (23). We intro-

duce here the following four Möbius transformations:

L0(x) = x, L1(x) =
e1x + e2

1 − e2
2 − e1e2

x− e1
,

L2(x) =
e2x + e2

2 − e2
3 − e2e3

x− e2
, L3(x) =

e3x + e2
3 − e2

1 − e3e1

x− e3
.

We see that Lj(f), j = 0, 1, 2, 3 are also solutions of (23), which is verified
by direct computations. Moreover, we assert that for any other Möbius
transformation L(x) = (ax + b)/(cx + d), ∆ := ad − bc 6= 0, the equation
(23) is not solved by L(f). To show this, we assume that L(f) satisfies (23),
that is,

∆2 (f ′)2

(cf + d)4
= A(z)

(
4
(af + b

cf + d

)3 − g̃2

(af + b

cf + d

)− g̃3

)
.(37)
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First we treat the case c = 0. In this case we may assume that d = 1 and
a 6= 0. Using (23) and (37), we eliminate f ′ and obtain a polynomial in
f which must vanish. Then we have that a = 1 and b = 0 since f is a
transcendental function. This implies that L must be L0 in this case.

Next we consider the case c 6= 0. We may assume that c = 1 in this case.
Using the same argument above, we obtain a polynomial in f of degree 4
which must vanish. Since f is transcendental, all coefficients must vanish.
From the coefficients of f4, f3 and f2, we obtain the following relations

4a3 − g̃2a− g̃3 = 0,(38)

12a2b− 4b2 + 4a3d + 8abd− 4a2d2 − bg̃2 − 3adg̃2 − 4dg̃3 = 0,(39)

and

(40) 4ab2 + 4a2bd− bdg̃2 − ad2g̃2 − 2d2g̃3 = 0.

From (38) and (40), we eliminate g̃3. Then noting that ad− b 6= 0, we have

4ab + d(8a2 − g̃2) = 0.(41)

(i) When a 6= 0, substituting b = −d(8a2 − g̃2)/(4a) (from (41)) and g̃3 =
4a3 − g̃2a (from (38)) into (39), we obtain

(a + d)d(12a2 − g̃2)2 = 0.

We note that d(12a2 − g̃2) 6= 0. In fact, if d(12a2 − g̃2) = 0, by (41) we
obtain that a = 0 since ad− b 6= 0, which is a contradiction. We have

d = −a(42)

and from (41) we have

b = (8a2 − g̃2)/4.(43)

(ii) When a = 0, we have g̃3 = 0 by (38) and dg̃2 = 0 by (41). If d 6= 0,
g̃2 = 0. This implies that 27g̃2

3 − g̃3
2 = 0, which is a contradiction. We have

d = 0. Substituting a = 0, d = 0 into (39), we obtain the equality

b(4b + g̃2) = 0.

As b 6= 0 in this case (ad− b 6= 0), we have b = −g̃2/4.
(i) and (ii) imply that (42) and (43) hold in any case.
By (38), we see that a coincides with one of the roots of G(x) = 0, say

e1, e2 or e3. We note that g̃2 = −4(e1e2 + e2e3 + e3e1) and g̃3 = 4e1e2e3.
In view of (42) and (43) if a = e1 then b = e2

1 − e2
2 − e1e2 and d = −e1.

This implies that L coincides with L1. Similarly we see that L = L2 when
a = e2, and L = L3 when a = e3.
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Proof of Theorem 3.1 (i) Let f and g be two transcendental meromorphic
solutions of (23) satisfying the hypothesis of this theorem. First we will show
that A(z) in (23) has no poles. From (23),

A(z) = (f ′)2/G(f) = (g′)2/G(g) and G(f)/G(g) = (f ′/g′)2.(44)

Suppose that A has a pole z0. From (44), there are four possibilities:
(i.1) z0 is a pole of f and a pole of g,
(i.2) z0 is a pole of f and a zero of G(g),
(i.3) z0 is a pole of g and a zero of G(f),
(i.4) z0 is a zero of G(f) and a zero of G(g).
Here we give a remark. In the cases (i.2)–(i.4) we consider the zero of

G(f) and G(g). Assume that z0 is a zero of G(f). It gives that f has one of
the ej (j = 1, 2, 3) point at z0. Without loss of generality we may assume
that it is an e1 point. We set f1 = L1(f), where L1 is given in Remark 3.4
(B), that is,

f1 = (e1f + e2
1 − e2

2 − e1e2)/(f − e1).(45)

Then we see by a simple computation that f1 also satisfies (23) and z0 is
a pole of f1. Hence the cases (i.2)–(i.4) reduce to the case (i.1), by using
a suitable Möbius transformation which can be defined similar way to (45).
Thus we have only to consider the case (i.1). Denote by µA, µf and µg

orders of pole z0 for A, f and g respectively.
From (23), we have 2(µf +1) = 3µf +µA, that is, (1 ≤)µf = 2−µA. Hence

µf = µA = 1, similarly µg = 1. Here we consider the Laurent expansions of
A, f and g in a neighborhood of z0 as follows:

A(z) = RA/(z − z0) + αA + O(z − z0), RA 6= 0,

f(z) = Rf/(z − z0) + αf + O(z − z0), Rf 6= 0,

g(z) = Rg/(z − z0) + αg + O(z − z0), Rg 6= 0.

From (32), Rf = Rg = 1/4RA. Further, substituting these representations
into (23) and comparing the coefficients of terms (z − z0)−3, we have

αf = αg = −RfαA/3RA = −αA/(12R2
A)(46)

By the assumption of this lemma ϕ := f − g does not vanish identically and
by (46) ϕ has a zero at z0. However by Lemma 3.3 it is impossible that ϕ
has a zero at z0, a contradiction.

Secondly we will show that all zeros of A are of even order. Let z1 be a
zero of A. From (44), if z1 is a zero of f ′, (respectively g′) and if z1 is not
a zero of G(f), (respectively G(g)), then the order of zero of A at z1 is an
even integer. Hence we shall consider four possibilities:
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(i.5) z1 is a pole of f and a pole of g,
(i.6) z1 is a pole of f , a zero of g′ and a zero of G(g),
(i.7) z1 is a pole of g, a zero of f ′ and a zero of G(f),
(i.8) z1 a zero of f ′, a zero of G(f), a zero of g′ and a zero of G(g).
We have only to treat the case (i.5). In fact, for the cases (i.6)–(i.8), as in

the cases (i.2)–(1.4) given above by using suitable Möbius transformations
they reduce to the case (i.5). We denote by λ the order of zero of A at z1,
and denote by µf and µg the orders of pole of f and g at z1 respectively.

Similarly to Proof of Lemma 3.3, we obtain (1 ≤)λ = µf − 2 = µg − 2,
which implies µf ≥ 3. Simply we write µf = µg = µ.

Consider the Laurent expansions of A, f and g in a neighborhood of z1.
Denote by RA the coefficient of (z−z1)µ−2 in the expansion of A, and denote
by Rf , Rg the coefficients of (z−z1)−µ in the expansions of f , g respectively.
From (23) similarly to (32), we have

Rf = Rg = µ2/4RA.(47)

We see that the coefficient of the term (z − z1)−2 in the right-hand side of
(36) is 6RA(Rf + Rg) = 3µ2 by (47).

We divide the behavior of ϕ at z = z1 into three cases, that is, ϕ has a
pole at z1, ϕ has a zero at z1, or ϕ does not have a pole nor a zero at z1.

We first assume that ϕ has a pole at z1 of order ν. Note that by (47) ν
is at most µ− 1. In the left-hand side of (36), the coefficient of double pole
z1 is ν(ν + 1) + (µ− 2)ν/2 = ν2 + µν/2. Hence we have 2ν2 + µν− 6µ2 = 0,
i.e., ν = −2µ or 2ν = 3µ. Since µ and ν are positive, ν = −2µ is absurd. If
2ν = 3µ, then we have that µ ≤ −2 using ν ≤ µ− 1, which is also absurd.

Next we treat the case ϕ has a zero at z1. By the assumption, ϕ := f − g
does not vanish. Hence in view of Lemma 3.3 this case does not occur.

Finally we consider the case ϕ does not have a pole nor a zero at z1. In
this case z1 is a simple pole or a regular point of the left-hand side of (36).
However the right-hand side has a double pole, a contradiction.

Therefore A must be a polynomial whose zeros are of even order, which
implies that there exists a polynomial a such that A = (a′)2. ¤

Proof of Theorem 3.1 (ii) We follow the idea in the proofs of Lemma 3.2
(a) and (b), see Bank and Kaufman [1]. Let f be a transcendental meromor-
phic solution of (23). We fix z0 ∈ C which is not a pole of f satisfying the
conditions a′(z0) 6= 0, ℘′(z0) 6= 0 and f ′(z0) 6= 0 (or G(f(z0)) 6= 0). Denote
by D0 a fundamental parallelogram of ℘ that contains z0. Further we set
f(z0) = b0 and f ′(z0)/a′(z0) = b1. Then from (23), b2

1 = G(b0). In view of
Lemma 3.2, there exists z1 ∈ D0 such that ℘(z1) = b0 and ℘′(z1) = b1. We
set α(z) = a(z)+z1−a(z0) and f1 = f1(z) = ℘(α(z)) = ℘(a(z)+z1−a(z0)).
Then it holds f ′1(z) = ℘′(α(z))α′(z) = ℘′(α(z))a′(z), and hence

(f ′1)
2 = (℘′(α))2(a′)2 = AG(℘(α)) = AG(f1)
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which implies that f1 is a meromorphic solution of (23). We have that

f1(z0) = ℘(a(z0) + z1 − a(z0)) = ℘(z1) = b0 = f(z0),(48)
f ′1(z0) = ℘′(a(z0) + z1 − a(z0))a′(z0)(49)

= ℘′(z1)a′(z0) = b1a
′(z0) = f ′(z0).

Set ψ = f−f1. Then from (48) and (49) we have that ψ(z0) = ψ′(z0) = 0.
We see that A′/2A and A is analytic at z0 from our assumption. Regarding
g as to f1 and ϕ as to ψ in (35), we conclude that ψ = 0, that is, f and f1

must coincide. This proves (ii). ¤

Proof of Theorem 3.1 (iii) Let u and v denote meromorphic solutions
of (23), and let a(z) be a polynomial given in (i). We may assume that
u = u(z) = ℘(a(z)) and we can write v = v(z) = ℘(a(z) + c) for a constant
c ∈ C by (ii). Put ℘(c) = d0 and ℘′(c) = d1. Then by the addition formula
of ℘-function,

℘(a(z) + c) =
1
4

(
℘′(a(z))− ℘′(c)
℘(a(z))− ℘(c)

)2

− ℘(a(z))− ℘(c),

that is,

v =
1
4

(
℘′(a(z))− d1

u− d0

)2

− u− d0.(50)

Since d2
1 = G(d0) and (a′(z))2 = A(z), from (23) and (50) we obtain
(

4(v + u + d0)(u− d0)2 −G(u)−G(d0)
)2

= 4G(d0)G(u).(51)

Put U = U(z) = u(z) − d0 and V = V (z) = v(z) − d0. Then since
G(d0) = 4d3

0 − g̃2d0 − g̃3 and G′(d0) = 12d2
0 − g̃2, we can write (51) as

U2V 2 − 1
2
G′(d0)UV −G(d0)(U + V ) +

1
16

(G′(d0)2 − 48d0G(d0)) = 0,

which confirms that U and V satisfy a relation of the form (25).
Conversely we suppose that the relation (25) holds for meromorphic func-

tions U and V . We differentiate (25) to obtain

U ′(2UV 2 −G2V −G1) = −V ′(2V U2 −G2U −G1).(52)

Using (25) we have

(2V U2 −G2U −G1)2 =4U2(G2UV + G1(U + V ) + G0) + G2
2U

2(53)

+ G2
1 − 4U3V G2 − 4U2V G1 + 2G2G1U

=4G1U
3 + (4G0 + G2

2)U
2 + 2G1G2U + G2

1

=G1K(U).
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Similarly we obtain

(2UV 2 −G2V −G1)2 = G1K(V ).(54)

Combining (52), (53) and (54), we obtain the assertion (26) with (27). ¤

Proof of Corollary to Theorem 3.1 (a): We can see (a) from (ii) of The-
orem 3.1.

(b): Suppose that (23) has a transcendental meromorphic solution f . In
the case there exists a transcendental meromorphic solution g of (23) such
that g 6= L(f) for some Möbius transformation, we have that #T(A) = ∞
by (a). For the proof of (b) it remains to find the number of Möbius trans-
formations Lj such that Lj(f) satisfy the equation (23) if #T(A) 6= 0,∞.
By means of Remark 3.4(B), the number of such Möbius transformations is
equal to four, namely, #T(A) = 4.

(c): In the case f = L(g) for a Möbius transformation L, we have
T (r, f) = T (r, g) + O(1) by means of the Nevanlinna first fundamental
theorem. We may suppose that f 6= L(g) for any Möbius transforma-
tion L. Then in view of Theorem 3.1(iii), for a d0 ∈ C, f0 = f − d0 and
g0 = g−d0 satisfy an algebraic relation (25). Since T (r, f0) = T (r, f)+O(1)
and T (r, g0) = T (r, g)+O(1), it is enough to show that f0 and g0 satisfy the
assertion of (c), namely T (r, f0) = T (r, g0) + O(1). If G1 = 0 in (25), then
f0g0 is a constant, from which we obtain that T (r, f0) = T (r, g0) + O(1). In
what follows, we assume that G1 6= 0. Define meromorphic functions

f1 = −(G1g0 + G0)/f0g
2
0 and g1 = −(G1f0 + G0)/g0f

2
0 .(55)

From (24) for U = f0, V = g0, we have

f0 − (G2g0 + G1)/g2
0 = (G1g0 + G0)/f0g

2
0.

Eliminating f0 of this equation by using the first one of (54), we see that f1

and g0 satisfy (25). Similarly we see that f0 and g1 satisfy (25). Namely,

f2
1 g2

0 −G2f1g0 −G1(f1 + g0)−G0 = 0,(56)

f2
0 g2

1 −G2f0g1 −G1(f0 + g1)−G0 = 0.(57)

Thus f0, g0, f1 and g1 are transcendental meromorphic solutions of

(w′)2 = A(z)K(w),(58)

where A(z) is given in (23) and K(w) is given in (27). We also have

f0 + f1 = (G2g0 + G1)/g2
0 and g0 + g1 = (G2f0 + G1)/f2

0 .(59)

It follows from (59) and G1 6= 0 that

2T (r, g0) ≤ T (r, f0) + T (r, f1) + O(1).(60)
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Using (55) and (59), we obtain

f−1
0 + f−1

1 = −(G2g0 + G1)/(G1g0 + G0).(61)

By means of the first fundamental theorem of Nevanlinna and (61),

T (r, f1) ≤ T (r, g0) + T (r, f0) + O(1).(62)

Combining (60) and (62), we have T (r, g0) ≤ 2T (r, f0) + O(1). Changing
the roles of f0(z) and g0(z), we obtain T (r, f0) ≤ 2T (r, g0) + O(1). This
implies that if ϕ(r) = S(r, f0), then ϕ(r) = S(r, g0), and if ϕ(r) = S(r, g0),
then ϕ(r) = S(r, f0). Hence for two meromorphic functions f and g, we can
write S(r, f) = S(r) and S(r, g) = S(r).

We recall that some properties of a transcendental meromorphic solution
w(z) of (58). Let w(z) be a transcendental meromorphic solution of (58).
Then by means of Gol’dberg’s theorem [5], we see that w(z) is of finite order.
We have that all poles of w(z) are double with a finite number of exceptions
and m(r, w) = O(log r). All zeros of w(z) are simple with a finite number
of exceptions and m(r, 1/w) = O(log r) since we assume G1 6= 0. Hence,

N(r, w) = 2N(r, w) + O(log r) = T (r, w) + O(log r),(63)

and

N(r, 1/w) = N(r, 1/w) + O(log r) = T (r, w) + O(log r).(64)

Let z0 be a pole of f0(z), and let z1 be a pole of f1(z). Then we see from
(25) and (56) (or (55)), z0 is a zero of g0, and z1 is also a zero of g0. If both
f0(z) and f1(z) have a common double pole z2, then z2 is a zero of g0(z) of
multiplicity at least two. From (64), the counting function of such common
poles is of O(log r). Thus it concludes that

N(r, f0) + N(r, f1) ≤ N(r, 1/g0) + O(log r).(65)

From (63), (64) and (65),

T (r, f0) + T (r, f1) ≤ 2T (r, g0) + O(log r).

Combining this and (60), we obtain

T (r, f0) + T (r, f1) = 2T (r, g0) + O(log r).(66)

Further we define

g2 = −(G1f1 + G0)/g0f
2
1 and f2 = −(G1g1 + G0)/f0g

2
1.

Repeating this process, we define sequences of meromorphic functions f0,
g1, f2, g3, . . . , and g0, f1, g2, f3, . . . . Namely we set for k = 0, 1, 2, . . . ,

f2k+3 = −G1g2k+2 + G0

f2k+1g
2
2k+2

, g2k+2 = −G1f2k+1 + G0

g2kf
2
2k+1

,
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g2k+3 = −G1f2k+2 + G0

g2k+1f
2
2k+2

, f2k+2 = −G1g2k+1 + G0

f2kg
2
2k+1

.

Then we see that all functions

{fj(z)} (j = 0, 1, . . . ) and {gk(z)} (k = 0, 1, . . . )

are transcendental and satisfy the differential equation (58), all pairs

(fj(z), gj+1(z)) and (gj(z), fj+1(z)) (j = 0, 1, . . . )

satisfy (25) and that all triples

(fj−1(z), fj+1(z), gj(z)) and (gj−1(z), gj+1(z), fj(z)) (j = 1, 2, . . . )

satisfy (66). We write for j = 0, 1, 2, . . . ,

hj(z) =

{
fj(z), if j is odd
gj(z), if j is even.

Let a0, b0, a1 and b1 be positive constants. We assume that there exists a
sequence {rn}, rn →∞ as n →∞ satisfying

(67)
{

T (rn, h0) ≤ a0T (rn, f0) + O(log rn)
T (rn, h0) ≥ b0T (rn, f0) + O(log rn)

and

(68)
{

T (rn, h1) ≤ a1T (rn, f0) + O(log r)
T (rn, h1) ≥ b1T (rn, f0) + O(log r).

We assert that there exist sequences {aj} and {bj}, j = 0, 1, 2, . . . , such that

(69) T (rn, hj) ≤ ajT (rn, f0) + O(log rn)

and

T (rn, hj) ≥ bjT (rn, f0) + O(log rn).(70)

In view of (66) and the comment that we posed after the definitions of
{fj(z)} and {gj(z)}, we have for j = 1, 2, . . . ,

T (rn, hj−1) + T (rn, hj+1) = 2T (rn, hj) + O(log rn).(71)

Assume that (69) and (70) hold for j = 0, 1, 2, . . . , k. Then from (71),

T (rn, hk+1) = 2T (rn, hk)− T (rn, hk−1) + O(log rn)
≤ 2akT (rn, f0)− bk−1T (rn, f0) + O(log rn),
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which gives

ak+1 = 2ak − bk−1.(72)

Similarly, we obtain

bk+1 = 2bk − ak−1.(73)

Therefore, using the assumptions (67) and (68), we obtain {an} which sat-
isfies (69) and {bn} which satisfies (70) recursively by (72) and (73).

We now compute ak and bk concretely. Put ck = ak + bk. Then we have
that ck+1 − 2ck + ck−1 = 0, and hence ck = (c1 − c0)k + c0, k = 0, 1, 2, . . . .
Thus we obtain

ak+1 − 2ak − ak−1 = µk + ν,(74)

where µ = c0 − c1 and ν = c1 − 2c0. In (74), we set dk = ak+1 − ak. Then
we have dk − 2dk−1 − dk−2 = µ. Further, we put ek = dk + µ/2. Then

ek − 2ek−1 − ek−2 = 0.(75)

Thus we can write ek with some constants γ1 and γ2:

ek = γ1λ
k
1 + γ2λ

k
2,(76)

where λ1 = 1+
√

2 and λ2 = 1−√2, (roots of the equation t2− 2t− 1 = 0),
see for example [3]. Thus dk = ek − µ/2, and hence for k = 1, 2, . . . ,

ak =
k−1∑

j=0

dj + a0 =
k−1∑

j=0

(
ej − µ

2

)
+ a0(77)

=
k−1∑

j=0

(
γ1λ

j
1 + γ2λ

j
2 −

µ

2

)
+ a0

= γ1
1− λk

1

1− λ1
+ γ2

1− λk
2

1− λ2
− µ

2
k + a0,

and

bk = 2ak − ak+1 =
γ1

1− λ1
(1− 2λk

1 + λk+1
1 ) +

γ2

1− λ2
(1− 2λk

2 + λk+1
2 )

− µ

2
(k − 1) + a0.

We assert that

lim inf
r→∞ T (r, f1)/T (r, f0) ≥ 1 and lim inf

r→∞ T (r, g1)/T (r, g0) ≥ 1.(78)
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To show this, we assume that

lim inf
r→∞ T (r, f1)/T (r, f0) = α < 1.(79)

For any ε > 0 such that α + ε < 1, there exists a sequence {rn} = {rn(ε)}
satisfying

T (rn, f1) ≤ (α + ε)T (rn, f0) and T (rn, f1) ≥ (α− ε)T (rn, f0),(80)

for n ≥ n0(ε). Later we choose a suitable ε. From (66),

T (rn, h0) = T (rn, g0) = (T (rn, f0) + T (rn, f1)) /2 + O(log rn)
≤ (T (rn, f0) + (α + ε)T (rn, f0)) /2 + O(log rn)
= (1 + α + ε)T (rn, f0)/2 + O(log rn).

Similarly, we have

T (rn, h0) ≥ (1 + α− ε)T (rn, f0)/2 + O(log rn).

We now set

a0 = (1 + α + ε)/2, b0 = (1 + α− ε)/2, a1 = α + ε, and b1 = α− ε.

We compute µ, ν, γ1 and γ2 concretely under our assumptions. We have
µ = c0 − c1 = (a0 + b0) − (a1 + b1) = 1 − α, and ν = c1 − 2c0 = −2. From
(74),

a2 = 2a1 + a0 + µ + ν = (3/2)α + (5/2)ε− 1/2.

On the other hand, from (77),

a1 = γ1 + γ2 + α + ε/2
a2 = (1 + λ1)γ1 + (1 + λ2)γ2 + (3/2)α + (1/2)ε− 1/2.

Hence we have
{

γ1 + γ2 = ε/2
(1 + λ1)γ1 + (1 + λ2)γ2 = 2ε.

Since λ1 = 1 +
√

2 and λ2 = 1−√2, we obtain

γ1 = ((1 +
√

2)/4)ε, γ2 = ((1−
√

2)/4)ε.

Hence we can write

ak =(α− 1)k + (1 + α + ε)/2(81)

+ ε

((
1 +

√
2

4

)
(1 +

√
2)k − 1√
2

+

(
1−√2

4

)
1− (1−√2)k

√
2

)
.
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Since we assume that α < 1, we can take k = k(α) so large that (α−1)k+1 <
0. Once we find a such k, we fix it. Then we choose ε so small that ak < 0.
For this ε, there exists {rn} = {rn(ε)} satisfying (80), in particular,

T (rn, hj) ≤ akT (rn, f0) + O(log rn).(82)

We observe the term O(log rn) in (82). Write this term ψ(log rn). Then
function ψ(x) in x depends on k. However, it is independent of ε. Since
h0 is transcendental and ak < 0, the right hand side of (82) is negative for
sufficiently large n, a contradiction. This gives the first inequality in (78).
On the other hand, we consider a sequence of functions

h∗j (z) =

{
fj(z), if j is even
gj(z), if j is odd

instead of hj(z) above. Then we obtain the second inequality in (78) by
similar arguments. Hence the assertion (78) follows. It follows from (66)
and the first inequality in (78) that

lim inf
r→∞ T (r, g0)/T (r, f0) ≥ 1.(83)

We recall the remark that we posed after the definitions of {fj(z)} and
{gj(z)}, in particular,

T (r, g0) + T (r, g1) = 2T (r, f0) + O(log r).

From this and the second inequality in (78), we have

lim inf
r→∞ T (r, f0)/T (r, g0) ≥ 1,

and hence

lim sup
r→∞

T (r, g0)/T (r, f0) ≤ 1.(84)

Hence we see that limr→∞ T (r, f0)/T (r, g0) = 1. This implies that T (r, f0) =
(1 + o(1))T (r, g0) as r →∞, which gives (28). We finally comment that the
case hj(z) = hi(z) for some j 6= i is included in our arguments. We have
thus proved (c). ¤

4. Examples

Finally we state some examples in this section. As mentioned in the
statement in Theorem 2.2, a condition that gives #S(A) ≥ 3 is obtained
and in Remark 2.6, a condition that gives #S(A) = 0 is obtained.
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A natural question arises: Under what conditions does #S(A) = 2 occur?
We shall give some examples of A in (1) for which #S(A) = 2 and an

example for (23) having the property #T(A) = 4.
Example 4.1 S(1/4z) = {cosh

√
z,− cosh

√
z}.

In fact, it is easy to see that cosh
√

z and − cosh
√

z are transcendental
entire solutions of the differential equation

(f ′)2 = (1/(4z))(f2 − 1).

It follows from Theorem 2.2 (i) that there is no other solution to the equation
above.

Similarly let p(z) be a polynomial with simple zeros only. Then,

S(p(p′)2) = {± cosh((2/3)p3/2)},
S((p′)2/p) = {± cosh 2p1/2},
S(z2 − 1) = {± cosh(z

√
z2 − 1− log(z +

√
z2 − 1))}

Example 4.2 The equation

(f ′)2 = (1/(4z))(4f3 − g̃2f − g̃3)

possesses a solution ℘(
√

z), where ℘ is Weierstrass’ elliptic function satis-
fying (22). Clearly ℘(

√
z + c), c 6= 0 ∈ C is not meromorphic and hence

#T(1/4z) = 4.
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