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SCHRÖDER FUNCTIONS II

K. ISHIZAKI AND N. YANAGIHARA

Abstract. Let R(w) be a non-linear rational function and s be a complex
constant with |s| > 1. It is showed that for any solution f(z) of the Schröder
equation f(sz) = R(f(z)), Julia directions of f(z) are also Borel directions of
f(z).

1. Introduction

Let R(w) be a rational function of degree p ≥ 2 and let s be a complex constant
with |s| > 1. We consider the Schröder equation

(1.1) f(sz) = R(f(z)).

We suppose that R(0) = 0 and |R′(0)| > 1. Let f(z) be a meromorphic solution
satisfying f(0) = 0 and f ′(0) = 1. Such a solution exists uniquely, if s = R′(0).
The order of f(z) equals to ρ = log p/ log |s| > 0, and it holds K1r

ρ < T (r, f) <
K2r

ρ for some constants 0 < K1 < K2, where T (r, f) denotes the Nevanlinna
characteristic function of f(z), see e.g. [13, p.160]. Throughout this paper, we use
standard notations in the Nevanlinna theory and the complex dynamics theory.
The reader can see the definitions of the proximity function, the counting function
and the characteristic function of a meromorphic function, and also the definitions
of the Julia direction and the Borel direction, see, e.g. [6], [11]. For the complex
dynamics theory, see e.g. [4], [5], [10]. Put dω = {z = reiω ; 0 ≤ r < ∞} and
define

Ω(ω, α) = {z ; | arg[z]− ω| < α}, Ωr(ω, α) = Ω(ω, α) ∩ {|z| < r}.
For a Schröder function f(z), a ray dω is called s-Julia direction if f(z) takes any
value other than possible Picard exceptional value(s) of f(z) in Ω(ω, α) for any
α. It is also called s-Borel direction of divergence type, simply sd-Borel direction,
for f(z) if zeros zn(a; Ω(ω, α)) of f(z)− a in Ω(ω, α), counted multiple zeros only
once, satisfies

(1.2)
∞∑

n=1

1

|zn(a; Ω(ω, α))|ρ = ∞
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Key words and phrases. Schröder equations, Borel and Julia directions, the Nevanlinna theory.

1



2 K. ISHIZAKI AND N. YANAGIHARA

for any a other than possible Picard exceptional value(s) of f(z). We have shown
that Julia directions and Borel directions for a solution f(z) of (1.1) are s-Julia
directions and sd-Borel directions, respectively [2]. Here we will prove the following
theorem.

Theorem 1. For a meromorphic solution f(z) of (1.1), any s-Julia direction is
also an sd-Borel direction.

2. Proof of Theorem 1

Write C ∪ {∞} as Ĉ. For R(w) in (1.1), there holds either one of the following
four cases.

(i) There are a, b ∈ Ĉ, a 6= b, such that R−1(a) = {a} and R−1(b) = {b}.
(ii) There are a, b ∈ Ĉ, a 6= b, such that R−1(a) = {b} and R−1(b) = {a}.
(iii) There is the only value a ∈ Ĉ such that R−1(a) = {a}.
(iv) There are no such values. That is, for any a ∈ Ĉ we have R−1(a) contains

a′ 6= a and R−1(a′) contains a′′ 6= a, a′.
We define a set E(R) as follows, E(R) = {a, b} for the case (i) or (ii), E(R) = {a}
for (iii) and E(R) = ∅ for (iv) [10, p.32]. It is known that the set E(R) coincides
with the set of exceptional values of a rational function R(z) which consists of

those a ∈ Ĉ such that the equation Rn(z) = a, n ∈ N have in totality a finite
number of roots, where Rn(z) denotes the n-th iteration of R(z). We denote the
Julia set of R(w) by JR. The following lemma is well known [4, p. 145], [10, p.
30].

Lemma 1. Let K ⊂ Ĉ\E(R) be a compact set. If D is a domain with D∩JR 6= ∅.
Then Rn(D) ⊃ K for n ≥ n0 with some n0 ∈ N.

We have proved the following lemma in [2].

Lemma 2. Let dω be a Julia direction for the solution f(z) of (1.1). Then f(dω)∩
JR 6= ∅.
Proof of Theorem 1. Write s = |s|e2πλi with λ ∈ [0, 1). If λ /∈ Q, then any direction
is sd-Borel direction[2]. Hence Theorem 1 follows.

In the case λ = µ/ν ∈ Q, considering f(s2νz) = R2ν(f(z)) instead of (1.1), we
are only concerned with (1.1) under the supposition s > 1.

When (i), (ii), or (iii) holds, R(w) is conjugate to wp, w−p, or a polynomial,
respectively (for the conjugacy, see [10, p. 24]). For the case (i), considering the
conjugation and the conditions on (1.1), we see that the equation (1.1) reduces to
the equation

(2.1) f(pz) = −1 + (1 + f(z))p = pf(z) + · · ·+ f(z)p.

The unique solution of (2.1) is given by f(z) = ez−1, which has s-Julia directions
dπ/2 and d3π/2. Obiously, these directions are also sd-Borel directions, which shows
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that Theorem 1 holds in this case. For the case (ii), we note that R2(w) is conjugate

to wp2
. We similarly consider the conjugation and the conditions on (1.1). Then

we obtain the unique solution to the reduced equation for the case (ii), which gives
the assertion. Therefore we have only to consider the cases (iii) and (iv).

Considering the conjugate form, we write R(w) = a1w + · · ·+ apw
p in case (iii)

occurs. Let L > 0 be such that for |w| ≥ L we have

|ap||w|p > 2(|ap−1||w|p−1 + · · ·+ |a1||w|) and |ap||w|p > 4|w|.
Then |R(w)| > 2|w| and |Rn(w)| > 2n|w| for |w| ≥ L.

Take b ∈ C for the case (iii), and b ∈ Ĉ for (iv). Put Mb = max(|b|, L) for (iii).
Obviously, we see that, if c ∈ R−n(b), then |c| < Mb. For, otherwise, we would
have |Rn(c)| ≥ 2n|c| ≥ 2n|b| > |b|, a contradiction. We choose the compact set K

in Lemma 1 as K = {w ; |w| ≤ Mb} for (iii), and K = Ĉ for (iv).
Let dω be a Julia direction of f(z). Write a sector Ω(ω, α) simply as Ω. Put

Ωr = Ω∩{r < |z| < s2r}. By Lemma 2, there is r0 such that f(Ωr0)∩JR 6= ∅. Hence
there is n0 ∈ N satisfying Rn(f(Ωr0)) ⊃ K for n ≥ n0, by Lemma 1. Therefore, if
we write r1 = sn0+1r0, then

(2.2) f(snΩr1) = Rn(f(Ωr1)) ⊃ K ⊃ R−n(b).

Let C be the set of critical points of R(w). It consists of 2p− 2 points, counted
with multiplicity [10, p. 27]. Let nspatr be the number of superattracting cycles for
R(w). Then nspatr ≤ 2(p − 1), [9] [10, p. 55]. Let Cspatr = {wk ; wk belongs to
some superattracting cylce}. Clearly, we have Cspatr ⊂ O+(C) =

⋃∞
n=1 Rn(C) (the

orbit of C). We divide the remaining part of the proof in three steps, namely
b /∈ O+(C), b /∈ Cspatr and b ∈ Cspatr. Note that 0 /∈ Cspatr, since 0 = R(0),
|R′(0)| > 1.

First we are concerned with the case b /∈ O+(C). Write R−n(b) = {b(n)
j ; 1 ≤ j ≤

pn}, with b
(n)
j 6= b

(n)
j′ if j 6= j′. By (2.2)

(2.3) N(snr1, b, f ; Ω) =

pn∑
j=1

N
(
r1, b

(n)
j , f ; Ω)

)
≥ pn log s.

Let snr1 ≤ r < sn+1r1. Then from (2.3),

∫ r

r1

N(t, b, f ; Ω)

tρ+1
dt ≥

n−1∑

k=0

∫ sk+1r1

skr1

pk log s

(sk+1r1)ρt
dt =

n−1∑

k=0

(log s)2

prρ
1

(2.4)

=
(log s)2

prρ
1

· n →∞, r →∞ (n →∞).

Secondly we consider the case b /∈ Cspatr. Suppose c1 ∈ C ∩R−n1(b) 6= ∅ for some
n1. Suppose c2 ∈ C ∩ R−n2(c1) 6= ∅ for some n2. Further suppose this procedure
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could be repeated infinitely many. Since C is a finite set, there would be a super-
attracting cycle, a contradiction. Therefore there is ck ∈ C ∩R−nk(ck−1) such that
R−n(ck)∩C = ∅ for any n ≥ 1. Thus d ∈ R−1(ck) does not belong to O+(C), hence
(2.4) holds for d, therefore also for b = Rm+1(d),m = n1 + · · ·+nk, with sm+1r for
r in (2.4).

Finally we treat the case b ∈ Cspatr. Obviously Cspatr is a finite set. Hence, for
sufficiently large m, there is some d ∈ R−m(b) with d /∈ Cspatr. Thus (2.4) holds
for d. Therefore (2.4) holds also for b = Rm(d), with smr for r in (2.4). ¤

3. An example

We consider the equation f(sz) = (1− z)f(z)2, s > 4, which admits a solution

f(z) =
∞∏

n=1

(
1− z

sn

)2n−1

.

We will show that for a large s the positive real axis is the only s-Julia direction
for f(z). However it is not an sd-Borel direction. This implies that Theorem 1
does not hold for solutions of equations f(sz) = R(z, f(z)).

We have that the order of f(z) equals to ρ = log 2/ log s < 1/2. Obviously
f(z) →∞ as z →∞ with <[z] ≤ 0.

Put z = x + iy, y = ax(a = tan φ 6= 0) and x = sn0t/
√

1 + a2, 1/
√

s ≤ t <
√

s,

∣∣∣1− z

sn

∣∣∣
2

= 1− 2x

sn
+

(1 + a2)x2

s2n
= 1− 2√

1 + a2

sn0t

sn
+

(
sn0t

sn

)2

.

For 1 ≤ n ≤ n0 − 1, write n = n0 − k, 1 ≤ k ≤ n0 − 1. Then

1− 2√
1 + a2

sn0t

sn
+

(
sn0t

sn

)2

≥ −2
sn0t

sn
+

(
sn0t

sn

)2

= t2s2k

(
1− 2

t

1

sk

)
,

1− 2√
1 + a2

sn0t

sn
+

(
sn0t

sn

)2

≤ 1 + t2s2k.

hence

L
(n0)
1,a (t) =

n0−1∑

k=1

1

2k
log

∣∣∣1− z

sn0−k

∣∣∣
2

≥
n0−1∑

k=1

{
2k

2k
log s− 4

t

1

(2s)k
+

log t2

2k

}

=

(
3− n0 + 1

2n0−2

)
log s− 4

t

1

2s− 1
, L

(n0)
1,a (s1/4) ≥ 2 log s− 4s−5/4,

L
(n0)
1,a

(
1√

1 + a2

)
≤

n0−1∑

k=1

1

2k
log(1 + s2k) ≤

n0−1∑

k=1

2k

2k
log s + log 2 ≤ 4 log s + log 2.
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For n = n0,

L
(n0)
2,a (t) = log

(
1− 2t√

1 + a2
+ t2

)
,

L
(n0)
2,a (s1/4) > 0, L

(n0)
2,a

(
1√

1 + a2

)
= log

a2

1 + a2
.

For n ≥ n0 + 1, write n = n0 + k, k ≥ 1. Taking s so large that 2/
√

s < 1/2, we
get

L
(n0)
3,a (t) =

∞∑

k=1

2k log
∣∣∣1− z

sn0+k

∣∣∣
2

≥
∞∑

k=1

2k log

(
1− 2√

1 + a2

t

sk

)

≥
∞∑

k=1

2k

{
− 4√

1 + a2

t

sk

}
= − 4t√

1 + a2

2

s− 2
,

L
(n0)
3,a (s1/4) ≥ −16s−3/4,

L
(n0)
3,a

(
1√

1 + a2

)
≤

∞∑

k=1

2k log

(
1 +

1

s2k

)
≤

∞∑

k=1

(
2

s2

)k

=
2

s2 − 2
.

Suppose there would be a = tan φ > 0 such that f(z) assume some b ∈ C \ {0}
at most finitely many times in Ω(0, φ). Then f(z) would omit three values 0, b,∞
in Ω(φ/2, φ/4) = {| arg[z]− φ/2| < φ/4}, and hence {f(snz)} would be a normal
family in

Q =

{
z ; s−1/2 < |z| < s1/2,

φ

4
< arg[z] <

3φ

4

}
.

Thus there would be a subsequence {n`} such that f(sn`z) tends to either ∞ or
a function g(z) uniformly on any compact subset of Q. But, if we write z0 = eiφ/2

and a1 = tan(φ/2), then for a large s

4 log |f(sn`s1/4z0)| = 2n`{L1,a1(s
1/4) + L2,a1(s

1/4) + L3,a1(s
1/4)}

≥ 2n`{2 log s− 4s−5/4 − 16s−3/4} → ∞.

Once we fix s large enough that the inequality above holds. It suffices to consider
the case a, and also a1 are sufficiently small. Hence we have

4 log

∣∣∣∣∣f
(

sn`

√
1 + a2

1

z0

)∣∣∣∣∣ ≤ 2n`

{
4 log s + log

a2
1

1 + a2
1

+
2

s2 − 2
+ log 2

}
→ −∞,

as n` → ∞, supposed that 4 log s + log(a2
1/(1 + a2

1)) + 2/(s2 − 2) + log 2 < 0, a
contradiction. Therefore f(z) admits any finite value infinitely often in Ω(0, φ) for
any φ, hence the positive real axis d0 is the only s-Julia direction for f(z).
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On the other hand, zeros zn(0, Ω(0, φ)) of f(z), in Ω(0, φ), are z = sn with
multiplicity 2n−1. Hence we get

∞∑
n=1

1

|zn(0, Ω(0, φ))|ρ =
∞∑

n=1

1

2n
< ∞,

in which multiple zeros are counted only once, and 0 is an exceptional value,
which means that d0 is not sd-Borel direction (though it is a Borel direction), and
Theorem 1 does not hold in this case.

At the end of this section, we pose a note. Consider sd-Borel direction in the
sense of Valiron, in which we count zn(0, Ω(0, φ)) with multiplicity. Since we have

∞∑
n=1

2n−1

|zn(0, Ω(0, φ))|ρ = ∞,

zero is not exceptional value for f(z). Therefore d0 is sd-Borel direction if we
consider it in the sense of Valiron.

4. Some remarks

Existence of Julia directions was proved by use of “cercles de remplissage” [3].
Sauer [8] called such a Julia direction as Milloux direction. But a Julia direction
need not necessarily be a Milloux direction [15].

On the other hand, on any Borel direction, there are centers of cercles de rem-
plissage [7, p.160 Theorem X]. Thus, for Schröder functions, any Julia direction is
a Milloux direction.

Recently, Zheng and others [1], [14] have newly introduced some singular direc-
tions for meromorphic functions.

Julia directions are known from the geometry of the Julia set of R(w) [2]. Hence
our theorem will give some tools for determining Borel directions for f(z).
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