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1. INTRODUCTION

Let f(z) be a meromorphic function. Throughout this note “meromorphic”
means “meromorphic in the whole complex plane C”. We use the notations
of the Nevanlinna theory, m(r, f), N(r,f), N(r,f), T(r,f), and for a € C,
m(r,a; f), N(r,a; f), N(r,c; f) etc., see e.g. [7], [6]. We call @ € C = CU {oo}
Picard exceptional value if f(z) # « for any z € C. It is said to be a Nevanlinna
deficiency and said to be a Valiron deficiency if

L (ras f) : m(r, a; f)

hﬂgolf 0 ) >0 and hirisoljp 0 ) > 0,
respectively. For a meromorphic function f(z), we denote by Ep(f), Ex(f) and
Eyv(f) the set of Picard exceptional values, Nevanlinna deficiencies and Valiron
deficiencies. Let R(z) be a rational function of degree at least two. The set
E(R) of exceptional values of R(z) consists of those a € C such that the equation
R°"(z) = a, n € N have in totally a finite number of roots, where R°"(z) denotes
the n-th iteration of R(z). It is known that for any meromorphic solution f(z) of
the Schroder equation f(sz) = R(f(z)), where s is a complex number with |s| > 1,
it holds

(1.1) E(R) = Ep(f) = Ex(f) = Ev([),
see, [1], [10]. We treated the non-autonomous case in [2]. Namely for a fixed
complex number s with [s| > 1, the following functional equation was considered

(1.2) f(s2) = R(z, [(2)),
where R(z,w) is a rational function in z and w with deg, [R(z,w)] =d > 2.

We continue to study the functional equation (1.2) and give two propositions in
this note. We assume that R(z,w) is holomorphic at (0, 0)

R(z,w) = Z ;2w |z <8, Jw| <.
5,k=0
The equation (1.2) admits a solution supposed that w = R(0,w) has a finite root g
and further that s"—ag1 # O foranyn > 1ifay o # 0, and s—ag; = 0,5"—ap1 # 0

for any n > 2 if ay 9 = 0, see [9, p.152]. Note that in the autonomous case every
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meromorphic solution is transcendental, however in the non-autonomous case it
does not hold in general.

We assume that (1.2) has a transcendental meromorphic solution f(z). Then we
have that the growth order p = p(f) is equal to logd/log|s| and the Nevanlinna
characteristic function T'(r, f) satisfies

(13) Klrp é T(T7 f) S K2rp7

for some constants K; and K, see e.g. [9, p. 160].

We considered the question whether (1.1) would hold for a transcendental mero-
morphic solution of (1.2), and showed that Ex(f) = Ev(f) does not always hold
in the non-autonomous case in [2]. That is to say, we proved that there ezists a
transcendental meromorphic solution of a non-autonomous equation of the form
(1.2) satisfying Ex(f) € Ev(f). We here show that Ep(f) = Ex(f) does not
always hold for a non-autonomous equation of the form (1.2), namely

Proposition 1. There exists a transcendental meromorphic solution of a non-
autonomous equation of the form (1.2) satisfying Ep(f) C En(f).

We will prove Proposition 1 in Section 2.

We considered a generalization of Eremenko and Sodin’s result changing a value
to an algebraic function in [2]. Let a(z) be an algebraic function defined by an
irreducible polynomial in w with rational function coefficients

(1.4) H(z,w)=wP +---+hi(2)w+ ho(z) =0, hp(z) €C(2), 0<k<p-—1.

Then the proximity function m(r,a; f) of f(2) to a(z) is defined by
1
(1.5) m(r,a; ) = Zm(r, 0:H(z, f(2)).

We call 2y is a a(z)-point of f(z) if H(zo, f(20)) = 0. Denote by n(r,a; f) the
number of zeros of H(z, f(2)) in |z| < r, divided by p, and define the counting
function N(r,a; f) by

(1.6) N(r,a; f) = /0 n(t,a, f) _ n(0,a, f)

:l /7" n(t70; H(Z, f(Z))) — TL(0,0; H(Z,f(Z)))
P Jo t
+n(0,0; H(z, f(2))) log .

dt +n(0,a; f)logr

dt

Then we have T'(r, H(z, f(2)) = pT'(r, f) + O(logr), and from (1.5) and (1.6),
T(r,f) = m(r,a; f) + N(r,a; f) + O(logr). An algebraic function a(z), defined
by (1.4), is said to be a Picard exceptional function for f(z), if H(z, f(z)) has no



REMARKS ON DEFICIENCIES FOR MEROMORPHIC SCHRODER FUNCTIONS 3

zeros, i.e. N(r,a; f)=0. Put

g MG e Naf)
TGy T Ty )
_ m(r,a; f) .. N(ra f) .
h?ligp—T(r, R 1—117{1ll£f To. ) = A(a; f).

When §(a; f) > 0, a(z) is said to be a Nevanlinna deficient function for f(z),
and when A(a; f) > 0, a(z) is said to be a Valiron deficient function for f(z).
We denote by ES(f), EL(f) and E(f) the set of Picard exceptional functions,
Nevanlinna deficient functions and Valiron deficient functions. Further we call a(z)
a totally ramified Picard function if N(r,a; f) = o(T(r, f)) as r — oo including
Picard functions. Denote by EX(f) the set of totally ramified Picard functions.
We write Fs(f) the set of totally ramified Picard exceptional values « satisfying
N(r,a; f) = o(T(r, f)) as r — oo. By definition we have Ej(f) C EZ(f) and
Ex(f) € E5()

We show in [2] that a transcendental meromorphic solution f(z) of (1.2) has
no Valiron deficient function other than totally ramified Picard functions. That
is to say, m(r,a; f) = o(T(r, f)), r — oo, if a(2) is not a totally ramified Picard
exceptional function. This implies that

(1.7) Ep(f) € EX(f) € Ey(f) € EB(f).
In connection with (1.1) and (1.7), we consider a question whether it would be
satisfied that E(R) = --- = Ey(f) = Ep(f) in the autonomous case.

Proposition 2. For any meromorphic solution f(z) of the Schrider equation
f(sz) = R(f(2)), where |s| > 1, we have

(1.8) E(R) = Ep(f) = Ex(f) = Ev(f) = Ep(f).

For the proof of Propositon 2, we need some notations and refer known results.
Let f(z) be a meromorphic function. Let d,, = {z; arg[z] = wo} be a ray, and «
be a positive number. Define a sector

(1.9) Qwo, @) = {z; |arg[z] — wo| < a}.

For any a € C, write zeros of f(z) —a (or of 1/f(z) when a = o0) in Q(wp, a) as
zn(a,wo; ), m=0,1,---, multiple zeros counted only once. A ray d,, is called a
Borel direction or a Borel ray for f(z) if for any a > 0,

S 1
(1.10) Z PRSI =o0 foranye>0
n=0 n 9 Y

with two possible exceptions of a € C. Any meromorphic function of positive finite
order admits Borel directions [8, p.273, Theorem VIL.6]. A ray d,, is called a Julia
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direction or a Julia ray of f(z) if the function f(z) takes any value a € C, except
two possible exceptional values, infinitely often in Q(wg, ) for any a > 0, see e.g.
[5]. We call d, an s-Julia direction of f(z) if the function f(z) takes any value
acC, except Picard exceptional values infinitely often in 2(wy, @) for any o > 0.
A Borel direction of f(z), with 0 < p(f) < oo, is of course a Julia direction, while
the converse need not be true. Further we call d, is an s-Borel direction if (1.9)
holds for any a, without exception, supposed a is not Picard exceptional value for
f(z). Moreover, if the left hand side of (1.9) diverges also for ¢ = 0, we speak of
s-Borel direction of divergence type, following Valiron [9, p.458]. We denote it as
sd-Borel direction. In [3], [4], we investigate sd-Borel directions of meromorphic
solutions of the Schroder equations. Write s = |s|e?™*. We assume that (1.2) is of
autonomous equation below. We showed [3] that when X\ ¢ Q, any meromorphic
solution of (1.2) admits any direction as sd-Borel. For the case A € Q, some
directions are not Julia (Borel) direction in general. We also showed that when
A € Q, any Julia direction of f(z) is s-Julia direction. We proved [4] that for
a meromorphic solution f(z) of (1.2), any s-Julia direction is also an sd-Borel
direction. Combining these results, we have the following

Theorem A. Suppose that (1.2) is autonomous. Then any meromorphic solution
of (1.2) admits at least one direction as sd-Borel.

We will give proof of Proposition 2 in Section 2.

2. PrROOFS OF PROPOSITIONS 1 AND 2

Proof of Proposition 1. We consider a non-autonomous equation

1
T/ >

which admits a meromorphic solution

fls2) =

ﬁ (14 2/sM)2""

Z/Sn 2" ’

We see that n(r,0; f) = 2" — 1 and n(r,00; f) = 2" — 1 for |s|* < r < |s|*"L.
Hence we have

n—1

N(r,0;f) => (2" = 1)log|s| + (2" — 1) log

.
i

N(r,00; f) =Y (2" — 1)log|s| + (2" — 1) log —
k=1

3 x>
_

r

s
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which yields that

(21)  N(r,o0; f) = 2N(r,0; f) + (n — 1) log|s| + log |—| s < < |5
S n

Assume that §(0, f) = 0. Then there exists a sequence {t,}, t, — 00 as n — o0
such that lim,, o N (t,,0; f)/T(t,, f) = 1. It follows from (1.3) that (n—1) log|s|+
logr/|s|™ = o(T(r, f)) as r — oco. Thus from (2.1), we get

lim N (t,,o00; f)/T(tn, f) = 2,

n—oo
a contradiction. Hence 0 must be a Nevanlinna deficient value. Clearly 0 is not

Picard exceptional value, since f(z) has infinitely many zeros. Therefore, we have
proved Proposition 1. 0

Proof of Proposition 2. Suppose that there exists a value a such that a € Ev(f)
and a € Ep(f). By Theorem A, there exists an sd-Borel direction d,, of f(z).
Hence in a sector Q(wg, o), @ > 0, f(z) admits any value satisfying (1.10) with at
most two exceptions which must be Picard exceptional values of f(z). Since a ¢
Ev(f), and hence a ¢ Ep(f), we see that lim,_, N(r,a, f, 2w, a))/T(r, f) > 0,
where N(r,a, f,Q(wp, @)) is the counting function which counts distinct a-points
in the sector Q(wp,a). Clearly we have N(r,a; f) > N(r,a, f,4), and hence
a ¢ Ep(f) which yields a contradiction. O
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