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1. Introduction

Let f(z) be a meromorphic function. Throughout this note “meromorphic”
means “meromorphic in the whole complex plane C”. We use the notations
of the Nevanlinna theory, m(r, f), N(r, f), N(r, f), T (r, f), and for α ∈ C,

m(r, α; f), N(r, α; f), N(r, α; f) etc., see e.g. [7], [6]. We call α ∈ Ĉ = C ∪ {∞}
Picard exceptional value if f(z) 6= α for any z ∈ C. It is said to be a Nevanlinna
deficiency and said to be a Valiron deficiency if

lim inf
r→∞

m(r, α; f)

T (r, f)
> 0 and lim sup

r→∞

m(r, α; f)

T (r, f)
> 0,

respectively. For a meromorphic function f(z), we denote by EP(f), EN(f) and
EV(f) the set of Picard exceptional values, Nevanlinna deficiencies and Valiron
deficiencies. Let R(z) be a rational function of degree at least two. The set

E(R) of exceptional values of R(z) consists of those a ∈ Ĉ such that the equation
R◦n(z) = a, n ∈ N have in totally a finite number of roots, where R◦n(z) denotes
the n-th iteration of R(z). It is known that for any meromorphic solution f(z) of
the Schröder equation f(sz) = R(f(z)), where s is a complex number with |s| > 1,
it holds

E(R) = EP(f) = EN(f) = EV(f),(1.1)

see, [1], [10]. We treated the non-autonomous case in [2]. Namely for a fixed
complex number s with |s| > 1, the following functional equation was considered

(1.2) f(sz) = R(z, f(z)),

where R(z, w) is a rational function in z and w with degw[R(z, w)] = d ≥ 2.
We continue to study the functional equation (1.2) and give two propositions in

this note. We assume that R(z, w) is holomorphic at (0, 0)

R(z, w) =
∞∑

j,k=0

αj,kz
jwk, |z| < δ, |w| < η.

The equation (1.2) admits a solution supposed that w = R(0, w) has a finite root γ0

and further that sn−α0,1 6= 0 for any n ≥ 1 if α1,0 6= 0, and s−α0,1 = 0, sn−α0,1 6= 0
for any n ≥ 2 if α1,0 = 0, see [9, p.152]. Note that in the autonomous case every
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meromorphic solution is transcendental, however in the non-autonomous case it
does not hold in general.

We assume that (1.2) has a transcendental meromorphic solution f(z). Then we
have that the growth order ρ = ρ(f) is equal to log d/ log |s| and the Nevanlinna
characteristic function T (r, f) satisfies

(1.3) K1r
ρ ≤ T (r, f) ≤ K2r

ρ,

for some constants K1 and K2, see e.g. [9, p. 160].
We considered the question whether (1.1) would hold for a transcendental mero-

morphic solution of (1.2), and showed that EN(f) = EV(f) does not always hold
in the non-autonomous case in [2]. That is to say, we proved that there exists a
transcendental meromorphic solution of a non-autonomous equation of the form
(1.2) satisfying EN(f) ( EV(f). We here show that EP(f) = EN(f) does not
always hold for a non-autonomous equation of the form (1.2), namely

Proposition 1. There exists a transcendental meromorphic solution of a non-
autonomous equation of the form (1.2) satisfying EP(f) ( EN(f).

We will prove Proposition 1 in Section 2.
We considered a generalization of Eremenko and Sodin’s result changing a value

to an algebraic function in [2]. Let a(z) be an algebraic function defined by an
irreducible polynomial in w with rational function coefficients

(1.4) H(z, w) = wp + · · ·+ h1(z)w + h0(z) = 0, hk(z) ∈ C(z), 0 ≤ k ≤ p− 1.

Then the proximity function m(r, a; f) of f(z) to a(z) is defined by

(1.5) m(r, a; f) =
1

p
m(r, 0; H(z, f(z))).

We call z0 is a a(z)-point of f(z) if H(z0, f(z0)) = 0. Denote by n(r, a; f) the
number of zeros of H(z, f(z)) in |z| ≤ r, divided by p, and define the counting
function N(r, a; f) by

N(r, a; f) =

∫ r

0

n(t, a, f)− n(0, a, f)

t
dt + n(0, a; f) log r(1.6)

=
1

p

∫ r

0

n(t, 0; H(z, f(z)))− n(0, 0; H(z, f(z)))

t
dt

+ n(0, 0; H(z, f(z))) log r.

Then we have T (r,H(z, f(z)) = pT (r, f) + O(log r), and from (1.5) and (1.6),
T (r, f) = m(r, a; f) + N(r, a; f) + O(log r). An algebraic function a(z), defined
by (1.4), is said to be a Picard exceptional function for f(z), if H(z, f(z)) has no
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zeros, i.e. N(r, a; f) = 0. Put

lim inf
r→∞

m(r, a; f)

T (r, f)
= 1− lim sup

r→∞

N(r, a; f)

T (r, f)
= δ(a; f),

lim sup
r→∞

m(r, a; f)

T (r, f)
= 1− lim inf

r→∞
N(r, a; f)

T (r, f)
= ∆(a; f).

When δ(a; f) > 0, a(z) is said to be a Nevanlinna deficient function for f(z),
and when ∆(a; f) > 0, a(z) is said to be a Valiron deficient function for f(z).
We denote by E∗

P(f), E∗
N(f) and E∗

V(f) the set of Picard exceptional functions,
Nevanlinna deficient functions and Valiron deficient functions. Further we call a(z)
a totally ramified Picard function if N(r, a; f) = o(T (r, f)) as r → ∞ including
Picard functions. Denote by E∗

P
(f) the set of totally ramified Picard functions.

We write EP(f) the set of totally ramified Picard exceptional values α satisfying
N(r, α; f) = o(T (r, f)) as r → ∞. By definition we have E∗

P(f) ⊂ E∗
P
(f) and

EP(f) ⊂ E∗
P
(f).

We show in [2] that a transcendental meromorphic solution f(z) of (1.2) has
no Valiron deficient function other than totally ramified Picard functions. That
is to say, m(r, a; f) = o(T (r, f)), r → ∞, if a(z) is not a totally ramified Picard
exceptional function. This implies that

E∗
P(f) ⊂ E∗

N(f) ⊂ E∗
V(f) ⊂ E∗

P
(f).(1.7)

In connection with (1.1) and (1.7), we consider a question whether it would be
satisfied that E(R) = · · · = EV(f) = EP (f) in the autonomous case.

Proposition 2. For any meromorphic solution f(z) of the Schröder equation
f(sz) = R(f(z)), where |s| > 1, we have

E(R) = EP(f) = EN(f) = EV(f) = EP (f).(1.8)

For the proof of Propositon 2, we need some notations and refer known results.
Let f(z) be a meromorphic function. Let dω0 = {z ; arg[z] = ω0} be a ray, and α
be a positive number. Define a sector

(1.9) Ω(ω0, α) = {z ; | arg[z]− ω0| < α}.
For any a ∈ Ĉ, write zeros of f(z) − a (or of 1/f(z) when a = ∞) in Ω(ω0, α) as
zn(a, ω0; α), n = 0, 1, · · · , multiple zeros counted only once. A ray dω0 is called a
Borel direction or a Borel ray for f(z) if for any α > 0,

(1.10)
∞∑

n=0

1

|zn(a, ω0; α)|ρ(f)−ε
= ∞ for any ε > 0

with two possible exceptions of a ∈ Ĉ. Any meromorphic function of positive finite
order admits Borel directions [8, p.273, Theorem VII.6]. A ray dω0 is called a Julia
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direction or a Julia ray of f(z) if the function f(z) takes any value a ∈ Ĉ, except
two possible exceptional values, infinitely often in Ω(ω0, α) for any α > 0, see e.g.
[5]. We call dω0 an s-Julia direction of f(z) if the function f(z) takes any value

a ∈ Ĉ, except Picard exceptional values infinitely often in Ω(ω0, α) for any α > 0.
A Borel direction of f(z), with 0 < ρ(f) < ∞, is of course a Julia direction, while
the converse need not be true. Further we call dω0 is an s-Borel direction if (1.9)
holds for any a, without exception, supposed a is not Picard exceptional value for
f(z). Moreover, if the left hand side of (1.9) diverges also for ε = 0, we speak of
s-Borel direction of divergence type, following Valiron [9, p.458]. We denote it as
sd-Borel direction. In [3], [4], we investigate sd-Borel directions of meromorphic
solutions of the Schröder equations. Write s = |s|e2πiλ. We assume that (1.2) is of
autonomous equation below. We showed [3] that when λ /∈ Q, any meromorphic
solution of (1.2) admits any direction as sd-Borel. For the case λ ∈ Q, some
directions are not Julia (Borel) direction in general. We also showed that when
λ ∈ Q, any Julia direction of f(z) is s-Julia direction. We proved [4] that for
a meromorphic solution f(z) of (1.2), any s-Julia direction is also an sd-Borel
direction. Combining these results, we have the following

Theorem A. Suppose that (1.2) is autonomous. Then any meromorphic solution
of (1.2) admits at least one direction as sd-Borel.

We will give proof of Proposition 2 in Section 2.

2. Proofs of Propositions 1 and 2

Proof of Proposition 1. We consider a non-autonomous equation

f(sz) =
1 + z

(1− z)2
f(z)2, |s| > 2,

which admits a meromorphic solution

f(z) =
∞∏

n=1

(1 + z/sn)2n−1

(1− z/sn)2n .

We see that n(r, 0; f) = 2n − 1 and n(r,∞; f) = 2n+1 − 1 for |s|n ≤ r < |s|n+1.
Hence we have

N(r, 0; f) =
n−1∑

k=1

(2k − 1) log |s|+ (2n − 1) log
r

|s|n ,

N(r,∞; f) =
n−1∑

k=1

(2k+1 − 1) log |s|+ (2n+1 − 1) log
r

|s|n ,
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which yields that

(2.1) N(r,∞; f) = 2N(r, 0; f) + (n− 1) log |s|+ log
r

|s|n , |s|n ≤ r < |s|n+1.

Assume that δ(0, f) = 0. Then there exists a sequence {tn}, tn → ∞ as n → ∞
such that limn→∞ N(tn, 0; f)/T (tn, f) = 1. It follows from (1.3) that (n−1) log |s|+
log r/|s|n = o(T (r, f)) as r →∞. Thus from (2.1), we get

lim
n→∞

N(tn,∞; f)/T (tn, f) = 2,

a contradiction. Hence 0 must be a Nevanlinna deficient value. Clearly 0 is not
Picard exceptional value, since f(z) has infinitely many zeros. Therefore, we have
proved Proposition 1. ¤

Proof of Proposition 2. Suppose that there exists a value a such that a 6∈ EV(f)
and a ∈ EP(f). By Theorem A, there exists an sd-Borel direction dω0 of f(z).
Hence in a sector Ω(ω0, α), α > 0, f(z) admits any value satisfying (1.10) with at
most two exceptions which must be Picard exceptional values of f(z). Since a 6∈
EV(f), and hence a 6∈ EP(f), we see that limr→∞ N(r, a, f, Ω(ω0, α))/T (r, f) > 0,
where N(r, a, f, Ω(ω0, α)) is the counting function which counts distinct a-points
in the sector Ω(ω0, α). Clearly we have N(r, a; f) ≥ N(r, a, f, Ωα), and hence
a 6∈ EP(f) which yields a contradiction. ¤

References
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