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Abstract. Meromorphic solutions of the Schröder equation f(sz) = R(f(z))
are studied, where |s| > 1 and R(w) is a rational function with deg[R] ≥ 2.
We will show that, if arg[s] /∈ 2πQ, then f(z) has any direction as Borel, and
besides, without exceptional values other than Picard values, which depend on
R(w). Further the case arg[s] ∈ 2πQ is also considered. We investigate the
relation between Julia directions of f(z) and the Julia set of R(w).

1. Introduction

Let f(z) be a transcendental meromorphic function in the complex plane C. We

call a ∈ C∪{∞} = Ĉ is a Picard exceptional value, if f(z) does not have any zeros
of f(z) − a, or zero of 1/f(z) when a = ∞. Let dω0

= {z ; arg[z] = ω0} be a ray,
and α be a positive number. Define a sector

(1.1) Ω(ω0, α) = {z ; | arg[z] − ω0| < α}.

A ray dω0
is called a Julia direction or a Julia ray of f(z) if the function f(z)

takes any value a ∈ Ĉ, except two possible exceptional values, infinitely often in
Ω(ω0, α) for any α > 0, see e.g. [4]. We call dω0

an s-Julia direction of f(z) if the

function f(z) takes any value a ∈ Ĉ, except Picard exceptional values infinitely
often in Ω(ω0, α) for any α > 0. Denote by ρ = ρ(f) the order of growth of f(z).

For any a ∈ Ĉ, write zeros of f(z) − a (or of 1/f(z) when a = ∞) in Ω(ω0, α) as
zn(a, ω0; α), n = 0, 1, · · · , multiple zeros counted only once. A ray dω0

is called a
Borel direction or a Borel ray for f(z) if for any α > 0,

(1.2)
∞∑

n=0

1

|zn(a, ω0; α)|ρ(f)−ε
= ∞ for any ε > 0

with two possible exceptions of a ∈ Ĉ. Any meromorphic function of positive finite
order admits Borel directions [9, p.273, Theorem VII.6]. A Borel direction of f(z),
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with 0 < ρ(f) < ∞, is of course a Julia direction, while the converse need not be
true. Further we call dω0

is a s-Borel direction if (1.2) holds for any a, without
exception, supposed a is not Picard exceptional value for f(z). Moreover, if the
left hand side of (1.2) diverges also for ε = 0, we speak of s-Borel direction of

divergence type, following Valiron [10, p.458]. We denote it as sd-Borel direction.

Let s be a complex number such that |s| > 1. Write s = |s|e2πλi, λ ∈ [0, 1). We
consider the Schröder equation

(1.3) f(sz) = R(f(z)) = P (f(z))/Q(f(z)),

where P (w) = a0 + a1w + · · ·+ apw
p and Q(w) = b0 + b1w + · · ·+ bqw

q, aj, bj ∈ C,
apbq 6= 0. We assume that P (w) and Q(w) are relatively prime polynomials, and
assume m = deg[R(w)] = max(p, q) ≥ 2.

It is well known that under some conditions (1.3) possesses a transcendental
meromorphic solution. We call this solution a Schröder function. It is also known
that the growth order of the Schröder function is given by ρ = log m/ log |s| > 0.
See, for example, [3], [11].

First we state a result in the case λ 6∈ Q.

Theorem 1. Suppose λ /∈ Q. Then a Schröder function f(z) of (1.3) admits any

direction as sd-Borel.

Also when λ ∈ Q, there may occur similar situation. For example, ℘ function
satisfies

℘(2z) = R(℘(z)) =
1

4
·

(6℘(z)2 − g2/2)2

4℘(z)3 − g2℘(z) − g3

− 2℘(z),

and admits any direction as sd-Borel, in which the Julia set JR of R(w) coincides

with Ĉ [8, p.32].
Secondly we consider the case λ ∈ Q. We investigate the relation between Julia

directions of f(z) and the Julia set of R(w). Write λ = µ/ν, where µ and ν 6= 0
are integers. Then by considering R2ν(w) for R(w), we can suppose that s > 1,
since JR2ν = JR by [8, p.28, Theorem 3].

Theorem 2. Suppose s > 1 in (1.3). Let f(z) be a Schröder function of (1.3).
A ray dω0

is s-Julia direction if and only if f(dω0
) ∩ JR 6= ∅. Further, any Julia

direction for f(z) is s-Julia.

The example of ℘(z), stated above, shows that it may occur f(dω0
) ( JR.

Examples for f(dω0
) = JR and f(dω0

) ) JR will be given later in Section 6, see
Examples 3 and 4.

Suppose R(0) = 0 and R′(0) = s in (1.3). Then there exists a Schröder function
of (1.3) such that f(0) = 0 and f ′(0) = 1, see e.g. [8]. Then the origin is a

repelling fixed point of R(w) which is contained in JR. Let ĴR(0) be a limit set
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of arg[w], w ∈ JR at w = 0, [8, p.125], i.e.,

(1.4) ĴR(0) =
⋂

ε>0

{arg[w] ; w ∈ JR, 0 < |w| < ε}.

For the Schröder function of (1.3), we define

(1.5) Jf = {ω ; dω is a Julia direction of f(z)}.

Obviously Jf is a closed set.

Theorem 3. Suppose that R(0) = 0 and R′(0) = s in (1.3). Let f(z) be a Schröder

function with f(0) = 0 and f ′(0) = 1. Then, the sets ĴR(0) and Jf coincide.

We mention properties of Schröder functions, in particular, their exceptional
values in Section 2. The characteristic function in a sector due to Tsuji is studied
in Section 3. We prove Theorem 1 in Section 4. In Section 5, we show Theorems 2
and 3. We give examples in Section 6.

2. Exceptional values

Let R(w) = P (w)/Q(w) be a rational function with deg[R] = m ≥ 2, where

P (w) and Q(w) are relatively prime polynomials. When there exists a value b ∈ Ĉ
such that b = R(w) implies w = b with multiplicity m, we call such value b a

maximally fixed value of R(w). When there are b and c ∈ Ĉ, b 6= c, such that
b = R(w) implies w = c and c = R(w) implies w = b, with multiplicity m
respectively, we call such a pair of values b and c a maximally fixed pair of R(w).
See [13].

We recall elementary properties of the Schröder equation, when R(w) admits a
maximally fixed value or a maximally fixed pair.

Case 1. If there is a maximally fixed value b ∈ Ĉ, then putting 1/(f(z) − b)
as f(z), we get

(2.1) f(sz) = P̃ (f(z)) = a0 + a1f(z) + · · · + apf(z)p.

Case 2. If there are two maximally fixed values b and c ∈ Ĉ, b 6= c, then
putting A(f(z) − b)/(f(z) − c) as f(z), with a constant A, we get

(2.2) f(sz) = f(z)p.

Case 3. If there exists a maximally fixed pair b and c ∈ Ĉ, b 6= c, then putting
similarly to the case 2, we get

(2.3) f(sz) = 1/f(z)q.

We have the following proposition.
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Proposition 4. A value b is a Picard value for the Schröder function of (1.3) if

and only if b is a maximally fixed value of R(w) in (1.3) or there exists a value

c 6= b such that b and c construct a maximally fixed pair of R(w).

It seems that Proposition 4 is a known fact. For the convenience for the reader,
we give a proof below.

Proof of Proposition 4. Suppose that R(w) admits a maximally fixed value b.
If the case 1 above occurs, then we get (2.1). It is clear that any solution of (2.1)
has no poles. If the case 2 above occurs with another maximally fixed value c,
we get (2.2). The only solution of (2.2) is f(z) = exp[Czκ], C ∈ C, where κ ∈ N
and sκ = p. Obviously, any solution of (2.1) has no poles nor zeros. This shows
that b is a Picard value of f(z). Next we suppose that R(w) admits a maximally
fixed pair b and c, say the case 3 occurs. Similarly the only solution of (2.3) is
f(z) = exp[Czκ], with sκ = −q, which implies that b and c are Picard values of
f(z).

Conversely suppose that b is a Picard value of f(z). Thus f(sz)−b has no zeros.
From (1.3), we can write f(sz)−b = R(f(z))−b = A(f(z)−b)k1(f(z)−c)k2/Q(w),
k1+k2 = d for some c ∈ C, c 6= b, where A is a constant, k1 and k2 are non-negative
integers, since the number of Picard values is at most two. If k2 = 0, then b is
a maximally fixed value of R(w). It suffices to consider the case k2 6= 0. In
this case, c is also a Picard value for f(z) and R(c) = b. Thus we can write

f(sz) − c = R(f(z)) − c = Ã(f(z) − b)k̃1(f(z) − c)k̃2/Q(w), k̃1 + k̃2 = d where

Ã is a constant, k̃1 and k̃2 are non-negative integers. If k̃2 6= 0, then R(c) = c,

a contradiction. If k̃2 = 0, then k̃1 6= 0 and R(b) = c. Thus we have k1 = 0. In
fact, if we assume the contrary, say k1 6= 0, then R(b) = b, a contradiction. This
concludes that a pair of values b and c is a maximally fixed pair of R(w). ¤

The set E(R) of exceptional values of a rational function R(z) consists of those
a ∈ C ∪ {∞} such that the equation Rn(z) = a, n ∈ N have in totality a finite
number of roots, where Rn(z) denotes the n-th iteration of R(z). The set E(R)
coincides with the set of maximally fixed values of R(w) and values of a pair of
maximally fixed values of R(w). By Proposition 4, E(R) coincides with the set of
Picard exceptional values of the corresponding Schröder function f(z). At the end
of this section, we state the known proposition, see e.g. [5, §14].

Proposition 5. Let R(w) be a rational function, and let V be an open set such

that V ∩JR 6= ∅. Then, for any compact set K ⊂ Ĉ \E(R), there is an integer n0

such that Rn(V ) ⊃ K for any n ≥ n0.

3. Characteristic functions in angular domains

There are several ways in defining the characteristic function for functions mero-
morphic in a sector, see [2, Chapter I §5], [6], [12]. We follow here Tsuji [9, p. 272].
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Let α be a positive number, and Ω(ω0, α) a sector defined in (1.1). Write
Ωα(r) = Ω(ω0, α) ∩ {|z| ≤ r}. For a meromorphic function w in Ω(ω0, α), we
define the characteristic function

(3.1) T (r; Ωα; w) =

∫ r

0

S(t, Ωα; w)

t
dt,

where

(3.2) S(r; Ωα; w) =
1

π

∫∫

Ωα(r)

(
|w′(reiθ)|

1 + |w(reiθ)|2

)2

rdrdθ.

We state an analogue for the second fundamental theorem of Nevanlinna. We
denote by n(r, b; Ωα; w) be the number of zeros of w(z)− b (when b = ∞, we take
1/w for w−b), contained in Ωα(r), multiple zeros counted only once, independently
of its multiplicity. Define

(3.3) N(r, b; Ωα; w) =

∫ r

1

n(r, b; Ωα; w)

t
dt.

We state an analogue for the second fundamental theorem of Nevanlinna. For
any α0 > α, we have S(r; Ωα; w) ≤ 3

∑3
i=1 n(2r, bi; Ωα0

; w) + O(log r), see [9, p.
272, Theorem VII.3], and hence

(3.4) T (r; Ωα; w) ≤ 3
3∑

i=1

N(2r, bi; Ωα0
; w) + O((log r)2).

Now we study how T (r; Ωα; w) behaves under some elementary operations with
respect to w, since there is no analogue of the first fundamental theorem for
T (r; Ωα; w). One purpose is to obtain an analogue for the Valiron-Mohon’ko the-
orem.

Proposition 6. Let R(w) be a rational function, and f(z) be a meromorphic

function in Ωα. Then for a constant L > 0, we have

T (r; Ωα; R(f)) ≤ LT (r; Ωα; f).

Proof of Proposition 6. Let k be a positive integer. We write f#(z) = |f ′(z)|/(1+
|f(z)|2) in what follows. For w = (f(z))k, using (|f |k−1 − 1)(|f |k+1 − 1) = |f |2k −
(|f |k−1 + |f |k+1) + 1 ≥ 0, we get

(f(z)k)# = k
(1 + |f(z)|2)|f(z)|k−1

1 + |f(z)|2k
·

|f ′(z)|

1 + |f(z)|2

= k
|f(z)|k−1 + |f(z)|k+1

1 + |f(z)|2k
·

|f ′(z)|

1 + |f(z)|2
≤ kf#(z).
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This gives that S(r; Ωα; fk) ≤ k2S(r; Ωα; f), and hence

(3.5) T (r; Ωα; fk) = T (r; Ωα; 1/fk) ≤ k2T (r; Ωα; f).

For w = af(z) with a ∈ C, a 6= 0, we have (af(z))# ≤ max(|a|, 1/|a|)f#(z).
Hence we have

(3.6) T (r; Ωα; af) ≤ (max{|a|, 1/|a|})2T (r; Ωα; f).

Let P1(w) = a0 + a1w + · · · + ak′wk′

, P2(w) = P1(w) + akw
k, k′ < k, and Q(w) =

b0 + b1w + · · · + bqw
q. Suppose that Q(w) and P2(w) are relatively prime. Put

w1(z) = P1(f(z))/Q(f(z)) and w2(z) = akf(z)k/Q(f(z)). We assert that

(3.7) T (r; Ωα; w1 + w2) ≤ L1{T (r; Ωα; w1) + T (r; Ωα; w2)},

with a constant L1, which depends on w1 and w2. In fact, we have

(w1 + w2)
# ≤

1 + |w1|
2

1 + |w1 + w2|2
w#

1 +
1 + |w2|

2

1 + |w1 + w2|2
w#

2 .

When |w2(z)| ≥ 2|w1(z)| or |w2(z)| ≤ (1/2)|w1(z)|, we have |w1+w2| ≥ (1/2)|w2| ≥
|w1|, or |w1 + w2| ≥ (1/2)|w1| ≥ |w2|. Thus, we obtain in both cases

1 + |w1|
2

1 + |w1 + w2|2
≤ 4 and

1 + |w2|
2

1 + |w1 + w2|2
≤ 4.

When (1/2)|w1(z)| ≤ |w2(z)| ≤ 2|w1(z)|, we see that |ak||f(z)|k ≤ 2
∑k′

j=0 |aj||f(z)|j.
Hence |f(z)| ≤ K for some K. Since Q(w) and P2(w) have no common zeros,
we have |Q(w)|2 + |P2(w)|2 ≥ K∗ > 0 with some K∗, for |w| ≤ K. Further
|Q(w)|2 ≤ K1, |P1(w)|2 ≤ K2 for |w| ≤ K. Hence

1 + |w1|
2

1 + |w1 + w2|2
=

|Q(f(z))|2 + |P1(f(z))|2

|Q(f(z))|2 + |P2(f(z))|2
≤

K1 + K2

K∗
≤ L2,

1 + |w2|
2

1 + |w1 + w2|2
=

|Q(f(z))|2 + |akf(z)k|2

|Q(f(z))|2 + |P2(f(z))|2
≤

K1 + |akK|2

K∗
≤ L2,

with some constant L2 ≥ 4. This implies ((w1 + w2)
#)2 ≤ 2L2

2

(
(w#

1 )2 + (w#
2 )2

)
,

from which (3.7) follows. Applying (3.7) and (3.6) repeatedly, and using (3.5), we
obtain

T (r; Ωα; R(f)) ≤ L3

p∑

k=0

T

(
r; Ωα;

akf
k

Q(f)

)
= L3

p∑

k=0

T

(
r; Ωα;

Q(f)

akfk

)

≤ L4

max(p,q)∑

k=0

(
T (r; Ωα; fk) + T (r; Ωα; 1/fk)

)
≤ LT (r; Ωα; f),

where L3, L4 and L are constants. Therefore, we have proved Proposition 6. ¤
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The inequality (3.7) and some estimates, which are satisfied in the argument in
the complex plane, does not always hold in general. We give counter examples in
Section 6, see Examples 1 and 2.

4. Proof of Theorem 1

Proof of Theorem 1. Let T (r, f) be the characteristic of f(z) in the sense of
Shimizu–Ahlfors [9] p.196. The Schröder function f(z) of (1.3) is known to satisfy

C1r
ρ ≤ T (r, f) ≤ C2r

ρ, ρ = log m/ log |s|,

for some constants 0 < C1 < C2, see [11]. Hence we have
∫ ∞ T (r, f)

rρ+1
dr = ∞.

Dividing C into two sectors Ω1 = Ω(0, π/2) and Ω2 = Ω(π, π/2), we obtain
∫ ∞ T (r; Ωj; f)

rρ+1
dr = ∞ for j = 1 or j = 2.

When, e.g., it holds for j = 1, we divide Ω1 into two sectors. Repeating this
procedure, we get a direction dω∗ such that, for Ω∗

n = Ω(ω∗, 2π/2n), we have
∫ ∞ T (r; Ω∗

n; f)

rρ+1
dr = ∞

for any n. Take a direction dω0
and a sector Ω(ω0, α). Let 2π/2n0 < α/8. There

is j0 such that |(ω0 + 2πλj0) − ω∗| < α/8 (mod 2π). By (1.3) we obtain, writing
the j0-th iteration of R(w) as Rj0(w), we have f(z) = Rj0(f(s−j0z)). Thus by
Proposition 6, with some constant L(j0),

T (r; Ω∗
j0

; f) ≤ L(j0)T (|s|−j0r; Ωα/4; f),

hence ∫ ∞ T (r; Ωα/4; f)

rρ+1
dr = ∞.

By (3.4), it can hold that, with α0 (α/4 < α0 < α),

(4.1)

∫ ∞ N(r; bi; Ωα0
; f)

rρ+1
dr < ∞

for at most two values b1, b2, which proves that any direction is Borel for f(z).
We show that Borel direction is s-Borel direction below. Assume that (4.1)

holds for b1 which is not Picard value for f(z). Then in Ω(ω0, α/4),

∞∑

n=0

1

|zn(b1, α/4)|ρ
< ∞.
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Put µ = min{ν ∈ N ; ν > 0, |νλ| < α/8 mod 2π}. From (1.3) we obtain
f(sµz) = Rµ(f(z)). By Proposition 4, neither the case 2 nor the case 3 in Section 2
occurs here. Hence b1 = Rµ(w) has a root b∗ 6= b1, for which we would have

∞∑

n=0

1

|zn(b∗, α)|ρ
< ∞,

a contradiction, if b∗ 6= b2. Suppose b∗ = b2. Then b∗ = Rµ(w) has a root b∗∗ 6=
b∗ = b2, which we can take b∗∗ 6= b1. Then we would have

∞∑

n=0

1

|zn(b∗∗, α)|ρ
< ∞,

a contradiction, which proves that there is no exceptional value other than Picard
values. ¤

5. Proofs of Theorems 2 and 3

Proof of Theorem 2. We suppose that f(dω0
) ∩ JR 6= ∅. Let z0 ∈ dω0

be such
that f(z0) ∈ JR and U = Uδ0 = {z; |z− z0| < δ0}. Write α0 = sin−1(δ0/|z0|). Then

V = f(U) is open and V ∩ JR 6= ∅. By Proposition 5, for any w∗ ∈ Ĉ \ E(R),
there exists an intger n0, we have w∗ ∈ Rn(V ) = Rn(f(U)) = f(snU), n ≥ n0,
since f(z) is the Schröder function. Therefore, snU = {snz; z ∈ U}, n ≥ n0,
contain zn such that f(zn) = w∗. Thus f(z) takes w∗ infinitely often in the sector
Ω(ω0, α0) = {z; | arg[z] − ω0| < α0}. Since δ0 is arbitrary and hence α0 > 0 is
arbitrary, dω0

is an s-Julia direction.
Suppose dω0

is an s-Julia direction. Let w0 /∈ E(R) be a point of JR. Let αn ↓ 0
and write Ω(ω0, αn) as Ωn. Then there is z0(n) ∈ Ωn such that f(z0(n)) = w0. We
can take `(n) ∈ N such that s ≤ |z0|/s

`(n) ≤ s2. For any z ∈ C and m ∈ N, we have
f(z/sm) ∈ R−m(f(z)) by (1.3). Thus, if we write zn = z0(n)/s`(n), then zn ∈ Ωn

and f(zn) ∈ R−`(n)(w0) ⊂ JR. Since αn ↓ 0, we have that znk
, for a subsequence

(nk), converges to a point z∗ ∈ dω0
. Since f(znk

) ∈ JR and f(znk
) → f(z∗), we get

f(z∗) ∈ JR. Hence f(dω0
) ∩ JR 6= ∅.

We show that a Julia direction is an s-Julia direction. Let dω be a Julia direction.
Suppose f(z) would take a /∈ E(R) only finite times in Ω(ω, α). Since there are
b ∈ R−1(a) and c ∈ R−1(b) such that (b − a)(c − a)(c − b) 6= 0, we see that f(z)
could take a, b and c only finitely many times in Ω(ω, α), which contradicts that dω

is a Julia direction for f(z). Therefore f(z) has infinitely many a-points in Ω(ω, α)
for any a /∈ E(R). ¤

Proof of Theorem 3. Suppose φ ∈ ĴR(0). There are wν ∈ JR such that wν →
0, arg[wν ] → φ as ν → ∞. We can take ε > 0 and η > 0 such that |w| < ε is
mapped into |z| < η homeomorphically by w = f(z). If |wν | < ε, then there is zν



BOREL AND JULIA DIRECTIONS OF MEROMORPHIC SCHRÖDER FUNCTIONS 9

with wν = f(zν), hence zν = wν(1 + O(wν)) and

arg[zν ] = arg[wν ] + arg[(1 + O(wν))] = arg[wν ] + o(1), as ν → ∞.

By means of Theorem 2, we see that ων = arg[zν ] ∈ Jf , since f(zν) = wν ∈ JR.

We have that Jf is closed. Hence φ = limν→∞ ων ∈ Jf . Therefore ĴR(0) ⊂ Jf .
Suppose ω ∈ Jf . By Theorem 2, there is a point z0 ∈ dω such that f(z0) = w0 ∈

JR. Put f(z0/s
n) = w

(n)
0 . Then by (1.3), w

(n)
0 ∈ R−n(w0) ∈ JR. Since f(0) = 0,

w
(n)
0 tend to 0 as n → ∞. Similarly to the case above, we can write

w
(n)
0 =

z0

sn
(1 + O(z0/s

n)) and
z0

sn
= w

(n)
0 (1 + O(w

(n)
0 )),

and hence

ω = arg[z0] = arg[w
(n)
0 ] + arg[1 + O(w

(n)
0 )] = arg[w

(n)
0 ] + δn,

where δn → 0 as n → ∞. For any ε > 0, we choose n0 sufficiently large so

that ω − δn = arg[w
(n)
0 ] ∈ {arg[w] ; w ∈ JR, 0 < |w| < ε}, n ≥ n0. This implies

ω ∈ ĴR(0). Thus Jf ⊂ ĴR(0). ¤

6. Examples

First we give an example in connection with Section 2. The following example
shows that (3.7) does not hold in general.

Example 1. We consider functions w1(z) = e2z + e−iz and w2(z) = −e2z. For

0 < ε < π/2, we define sectors Ω
±π/2
ε = Ω(±π/2, π/2 − ε), Ω0

ε = Ω(0, ε) and
Ωπ

ε = Ω(π, ε). We compute

S(r; Ω0
ε ; w2) =

1

π

∫∫

t≤r,|θ|≤ε

| − 2e2z|2

(1 + |e2z|2)2
tdtdθ (z = teiθ)

=
1

π

∫∫

t≤r,|θ|≤ε

4e4t cos θ

(1 + e4t cos θ)2
tdtdθ ≤

2ε

π

∫ r

0

4e4t cos ε

(1 + e4t cos ε)2
tdt = O(1),

and hence

(6.1) T (r; Ω0
ε ; w2) = O(log r).

We choose an ε sufficiently small satisfying sin ε − 2 cos ε ≤ −1. Then by similar
computations, we get

(6.2) T (r; Ω0
ε ; w1) = O(log r).

On the other hand, we assert that for e−iz = w1 + w2

(6.3) T (r; Ω0
ε ; e

−iz) = T (r; Ωπ
ε ; e−iz) = (1/2π)r + O(log r).

In fact, it is well known that T (r; e−iz) = (1/π)r + O(1). It is easy to see that

T (r; Ωπ/2
ε ; e−iz) = T (r; Ω−π/2

ε ; e−iz) = O(log r),
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which gives (6.3). It follows from (6.1), (6.2) and (6.3) that

T (r; Ω0
ε ; w1 + w2) ≤ L

(
T (r; Ω0

ε ; w1) + T (r; Ω0
ε ; w2)

)

does not hold for any L.

Let f1(z) and f2(z) be meromorphic functions in the complex plane. We have
T (r, f1f2) ≤ T (r, f1)+T (r, f2)+O(1). However, in the arguments in the sector, the
corresponding inequality in terms of the characteristic function defined by (3.1)
does not hold.

Example 2. Put w1(z) = e2ze−iz and w2(z) = e−2z. We have

T (r; Ω0
ε ; w1w2) = T (r; Ω0

ε ; e
−iz) = (1/2π)r + O(log r).

On the other hand, by similar computations in Example 1, we have

T (r; Ω0
ε ; w1) = O(log r) and T (r; Ω0

ε ; w2) = O(log r).

Hence T (r; Ω0
ε ; w1w2) ≤ L

(
T (r; Ω0

ε ; w1) + T (r; Ω0
ε ; w2)

)
does not hold for any con-

stant L.

Example 3. Suppose P (w) be a polynomial such that JP is an analytic curve
or arc. Then there are only finitely many Borel (Julia) directions for the solution
f(z) of (2.1). In this case, we have f(dω0

) = JP if dω0
is a Julia direction.

In fact, since JP is an analytic curve or arc, it can contain at most countably
many double points. Hence it must be a Jordan curve or arc [8, p.140 Theorem
3].

If it is a Jordan arc, then P (w) with deg[P ] = m is conjugate to ±Tm(w), where
Tm denotes the m-th Tchebychev polynomial [8, p.143 Theorem 5]. Hence Borel
directions of f(z) are finite in number. For example, if P (w) = 4w + w2, then

f(z) = −4 sin2(
√

−z/4) satisfies f(4z) = P (f(z)), f(0) = 0 and f ′(0) = 1. In
this case JP = [−4, 0] and the only Borel direction dπ is the negative real axis.
Obviously we have f(dπ) = JP .

If JP is a Jordan curve, then P (w) is conjugate to wm [8, p.145 Exercise 8],
hence the number of Borel directions of f(z) are also finite. Thus it is easily to see
that f(dω0

) = JP . For example, if P (w) = 2w + w2, then f(z) = ez − 1 satisfies
f(2z) = P (f(z)), f(0) = 0 and f ′(0) = 1. In this case JP = {|w + 1| = 1} and the
only Borel directions are dπ/2, d3π/2, i.e. positive and negative imaginary axes. It
is obvious that f(dπ/2) = f(d3π/2) = JP .

Example 4. Let P (w) = sw + w2, s > 4. Consider the equation

f(sz) = P (f(z)) = sf(z) + f(z)2, f(0) = 0, f ′(0) = 1.

Let O−({0}) =
⋃

n P−n(0) be the backward orbit of {0} by P (w). Write P−1(0) =
{b1, b2}, where b1 = 0, b2 = −s. Write P−1(b1) = {b11, b12}, P−1(b2) = {b21, b22},
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where

b11 = 0, b12 = −s − b11 = −s < 0;

b21 =
−s + s

√
1 − 4/s

2
, b22 = −s − b21, −s ≤ b21, b22 ≤ 0.

Then P−2(0) = P−1(b1) ∪ P−1(b2). In general, write P−n(0) = {bJn
; Jn ∈ Tn},

where Tn denotes the set of n-tuples of 1, 2. Suppose −s ≤ bJn
≤ 0. Then

P−n−1(0) = {bJn1, bJn2; Jn ∈ Tn}, in which

bJn1 =
−s + s

√
1 + 4bJn

/s

2
, bJn2 = −s − bJn1,

hence −s ≤ bJn+1
≤ 0. Thus O−({0}) ⊂ [−s, 0]. Let f(z0) = −s = b2. Then

f(z0/s
m) = bJn

∈ O−({0}) for some bJn
. There is δ > 0 such that f(z) is injective

on {z; |z| < δ}. Take m so large that |z0/s
m| < δ. Obviously w = f(z) = z +∑∞

k=2 akz
k, where ak ∈ R. Hence z = w +

∑∞
k=2 ckw

k, where ck ∈ R, and

z0

sm
= bJn

+ O(b2
Jn

) ≤ 0,

which shows that z0 ≤ 0. Since f(z) takes every a ∈ [−s, 0] in [z0, 0], we get

O−({0}) ⊂ f([z0, 0]). Therefore JP = O−({0}) ⊂ f([z0, 0]) = f([z0, 0]) ⊂ f(dπ),
where dπ = {z; arg[z] = π}. By the above arguments we see that every value in
O−({0}) is not taken by f(z) other than in dπ, hence dπ is the only Julia direction
for f(z). Since the order ρ(f) = log 2/ log s of f(z) is less than 1/2, we see easily,
by Wiman’s theorem, e.g. [1, p. 39, Theorem 3.1.5], that JP ( f(dπ). Note that
−s/2 6∈ JP ( [−s, 0]. In fact, P (−s/2) = −s2/2 + s2/4 = −s2/4 < −s.

Acknowledgement Theorem 2 is due to a suggestion of Professor Walter Berg-
weiler. We express our hearty thanks to him for his cordial and valuable advice.
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