BOREL AND JULIA DIRECTIONS OF MEROMORPHIC
SCHRODER FUNCTIONS

KATSUYA ISHIZAKI AND NIRO YANAGIHARA

ABSTRACT. Meromorphic solutions of the Schroder equation f(sz) = R(f(2))
are studied, where |s| > 1 and R(w) is a rational function with deg[R] > 2.
We will show that, if arg[s] ¢ 27Q, then f(z) has any direction as Borel, and
besides, without exceptional values other than Picard values, which depend on
R(w). Further the case arg[s] € 27Q is also considered. We investigate the
relation between Julia directions of f(z) and the Julia set of R(w).

1. INTRODUCTION

Let f(z) be a transcendental meromorphic function in the complex plane C. We
call a € CU{oo} = C is a Picard exceptional value, if f(z) does not have any zeros
of f(z) —a, or zero of 1/f(z) when a = co. Let d,, = {z; arg[z] = wo} be a ray,
and « be a positive number. Define a sector

(1.1) Qwo, ) = {2z ; |arg[z] — wo| < a}.

A ray d,, is called a Julia direction or a Julia ray of f(z) if the function f(2)
takes any value a € C, except two possible exceptional values, infinitely often in
Q(wo, @) for any a > 0, see e.g. [4]. We call d,,, an s-Julia direction of f(z) if the

function f(z) takes any value a € C, except Picard exceptional values infinitely
often in Q(wp, @) for any a > 0. Denote by p = p(f) the order of growth of f(z).
For any a € C, write zeros of f(z) —a (or of 1/f(z) when a = o0) in Q(wp, a) as
zn(a,wo; ), m=0,1,---, multiple zeros counted only once. A ray d,, is called a
Borel direction or a Borel ray for f(z) if for any a > 0,

= 1
(1.2) Z o (o )P =o0 foranye>0
n=0 n Y Y

with two possible exceptions of a € C. Any meromorphic function of positive finite
order admits Borel directions [9, p.273, Theorem VIIL.6]. A Borel direction of f(z),
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with 0 < p(f) < o0, is of course a Julia direction, while the converse need not be
true. Further we call d, is a s-Borel direction if (1.2) holds for any a, without
exception, supposed a is not Picard exceptional value for f(z). Moreover, if the
left hand side of (1.2) diverges also for ¢ = 0, we speak of s-Borel direction of
divergence type, following Valiron [10, p.458]. We denote it as sd-Borel direction.

Let s be a complex number such that |s| > 1. Write s = |s|e*™ X € [0,1). We
consider the Schréder equation

(1.3) f(sz) = R([(2)) = P(f(2))/Q(f(2)),

where P(w) = ap+ayw+ - - -+ apw? and Q(w) = by +byw+ - - - +b,w?, a;,b; € C,
apyby # 0. We assume that P(w) and Q(w) are relatively prime polynomials, and
assume m = deg[R(w)] = max(p, q) > 2.

It is well known that under some conditions (1.3) possesses a transcendental
meromorphic solution. We call this solution a Schroder function. It is also known
that the growth order of the Schréder function is given by p = logm/log|s| > 0.
See, for example, [3], [11].

First we state a result in the case A € Q.

Theorem 1. Suppose A & Q. Then a Schrider function f(z) of (1.3) admits any
direction as sd-Borel.

Also when A € Q, there may occur similar situation. For example, o function
satisfies

and admits any direction as sd-Borel, in which the Julia set Jr of R(w) coincides
with C [8, p.32].

Secondly we consider the case A € Q. We investigate the relation between Julia
directions of f(z) and the Julia set of R(w). Write A = /v, where u and v # 0
are integers. Then by considering R?(w) for R(w), we can suppose that s > 1,
since Jpz2v = Jr by [8, p.28, Theorem 3.

—2¢(2),

Theorem 2. Suppose s > 1 in (1.3). Let f(z) be a Schrider function of (1.3).
A ray dy, is s-Julia direction if and only if f(du,) N JTr # 0. Further, any Julia
direction for f(z) is s-Julia.

The example of p(z), stated above, shows that it may occur f(d,,) € Jg.
Examples for f(d,,) = Jr and f(d,,) 2 Jr will be given later in Section 6, see
Examples 3 and 4.

Suppose R(0) = 0 and R'(0) = s in (1.3). Then there exists a Schroder function
of (1.3) such that f(0) = 0 and f’(0) = 1, see e.g. [8]. Then the origin is a
repelling fixed point of R(w) which is contained in Jg. Let ﬁ(O) be a limit set



BOREL AND JULIA DIRECTIONS OF MEROMORPHIC SCHRODER FUNCTIONS 3

of arglw],w € Jr at w =0, [8, p.125], i.e.,

(1.4) Tr(0) = () {arglw] s w € Tr, 0< [w] < .
>0

For the Schroder function of (1.3), we define

(1.5) J; ={w; d, is a Julia direction of f(z)}.

Obviously J; is a closed set.
Theorem 3. Suppose that R(0) =0 and R'(0) = s in (1.3). Let f(z) be a Schrider

—

function with f(0) =0 and f'(0) = 1. Then, the sets Jr(0) and J; coincide.

We mention properties of Schroder functions, in particular, their exceptional
values in Section 2. The characteristic function in a sector due to Tsuji is studied
in Section 3. We prove Theorem 1 in Section 4. In Section 5, we show Theorems 2
and 3. We give examples in Section 6.

2. EXCEPTIONAL VALUES

Let R(w) = P(w)/Q(w) be a rational function with deg[R] = m > 2, where
P(w) and Q(w) are relatively prime polynomials. When there exists a value b € C
such that b = R(w) implies w = b with multiplicity m, we call such value b a
maximally fixed value of R(w). When there are b and ¢ € C, b +# ¢, such that
b = R(w) implies w = ¢ and ¢ = R(w) implies w = b, with multiplicity m
respectively, we call such a pair of values b and ¢ a maximally fixed pair of R(w).
See [13].

We recall elementary properties of the Schroder equation, when R(w) admits a
maximally fixed value or a maximally fixed pair.

Case 1. If there is a maximally fixed value b € C, then putting 1/(f(z) — b)
as f(z), we get

(2.1) f(sz) =P(f(2) =ao+arf(z) +---+a,f(2)’.

Case 2. If there are two maximally fixed values b and ¢ € @, b # ¢, then
putting A(f(z) —b)/(f(z) —¢) as f(z), with a constant A, we get

(2.2) f(sz) = f(2)".

Case 3. If there exists a maximally fixed pair b and ¢ € (@, b # ¢, then putting
similarly to the case 2, we get

(2.3) fsz) = 1/f(2)".

We have the following proposition.



4 KATSUYA ISHIZAKI AND NIRO YANAGIHARA

Proposition 4. A value b is a Picard value for the Schréoder function of (1.3) if
and only if b is a maximally fized value of R(w) in (1.3) or there exists a value
¢ # b such that b and ¢ construct a mazimally fized pair of R(w).

It seems that Proposition 4 is a known fact. For the convenience for the reader,
we give a proof below.

Proof of Proposition 4. Suppose that R(w) admits a maximally fixed value b.
If the case 1 above occurs, then we get (2.1). It is clear that any solution of (2.1)
has no poles. If the case 2 above occurs with another maximally fixed value c,
we get (2.2). The only solution of (2.2) is f(z) = exp[Cz"],C € C, where K € N
and s® = p. Obviously, any solution of (2.1) has no poles nor zeros. This shows
that b is a Picard value of f(z). Next we suppose that R(w) admits a maximally
fixed pair b and ¢, say the case 3 occurs. Similarly the only solution of (2.3) is
f(z) = exp|Cz"], with s® = —¢, which implies that b and ¢ are Picard values of
1(2).

Conversely suppose that b is a Picard value of f(z). Thus f(sz)—b has no zeros.
From (1.3), we can write f(sz)—b = R(f(2))—b= A(f(2)=b)"(f(2)—c)*/Q(w),
k1+ ko = d for some ¢ € C, ¢ # b, where A is a constant, k; and ks are non-negative
integers, since the number of Picard values is at most two. If ky = 0, then b is
a maximally fixed value of R(w). It suffices to consider the case ko # 0. In
this case, ¢ is also a Picard value for f(z) and R(c) = b. Thus we can write
f(s2) — ¢ = R(f(2) — e = A(7(z) ~ B (F(2) — )/ Qw), b + o = d where
A is a constant, k; and ko are non-negative integers. If ks # 0, then R(c) = ¢,
a contradiction. If ky = 0, then k; # 0 and R(b) = c¢. Thus we have k; = 0. In
fact, if we assume the contrary, say k; # 0, then R(b) = b, a contradiction. This
concludes that a pair of values b and ¢ is a maximally fixed pair of R(w). O

The set E(R) of exceptional values of a rational function R(z) consists of those
a € CU{oo} such that the equation R"(z) = a, n € N have in totality a finite
number of roots, where R"(z) denotes the n-th iteration of R(z). The set E(R)
coincides with the set of maximally fixed values of R(w) and values of a pair of
maximally fixed values of R(w). By Proposition 4, E(R) coincides with the set of
Picard exceptional values of the corresponding Schréder function f(z). At the end
of this section, we state the known proposition, see e.g. [5, §14].

Proposition 5. Let R(w) be a rational function, and let V' be an open set such
that VN Jr # 0. Then, for any compact set K C C\ E(R), there is an integer ng

such that R*(V') D K for any n > ny.
3. CHARACTERISTIC FUNCTIONS IN ANGULAR DOMAINS

There are several ways in defining the characteristic function for functions mero-
morphic in a sector, see [2, Chapter I §5], [6], [12]. We follow here Tsuji [9, p. 272].
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Let a be a positive number, and Q(wp, ) a sector defined in (1.1). Write
Qu(r) = Qwo,a) N {|z] < r}. For a meromorphic function w in Q(wo, @), we
define the characteristic function

(3.1) T Qi) = /0

where

w'(re”)|
.2 Q drdf.
(3.2) S(r; Qg w) // (1—{—]10 (o2 rdr

We state an analogue for the second fundamental theorem of Nevanlinna. We
denote by 71(r, b; ,; w) be the number of zeros of w(z) — b (when b = oo, we take
1/w for w—b), contained in (), multiple zeros counted only once, independently
of its multiplicity. Define

(3.3) N(r,b;Qu;w) = /

"S(t, Qa;w)

dt,
t

"n(r, by Qg w)
t

dt.

We state an analogue for the second fundamental theorem of Nevanlinna. For
any ag > a, we have S(r; Qu;w) < 3320 (27, bi; Qog; w) + O(logr), see [9, p.
272, Theorem VII.3], and hence

3
(3.4) T(r; Qu;w) <3 ZW(QT, bi; Qag; w) + O((log7)?).
i=1
Now we study how T'(r; Q,; w) behaves under some elementary operations with
respect to w, since there is no analogue of the first fundamental theorem for
T(r;Qq;w). One purpose is to obtain an analogue for the Valiron-Mohon’ko the-
orem.

Proposition 6. Let R(w) be a rational function, and f(z) be a meromorphic
function in Q. Then for a constant L > 0, we have

T(r;Q; R(f)) < LT(r; Qa; f).

Proof of Proposition 6. Let k be a positive integer. We write f#(2) = |f"(2)|/(1+
F(2)) in what follows. For w = (£(2))¥, using (|f[** — 1)([f[1 — 1) = | {2 -
(I + 1AM +1 20, we get

SRVH#E — A+ fEAPIfE ()
(f()")" =k 1+ [f(2)]* B
_ @I M 7))

L+ [f(2)]* L+ [f(2)]* ~

< kf7(2).



6 KATSUYA ISHIZAKI AND NIRO YANAGIHARA

This gives that S(r; Qq; f*) < k2S(r; Qa; f), and hence

(3.5) T(r; Qs ) = T(r; Qa; 1/ f*) < KT (r; Qs f)-

For w = af(z) with a € C, a # 0, we have (af(2))* < max(|a|,1/|a])f#(2).

Hence we have
(3.6) T(r;Qu;af) < (max{|al, 1/]a|})*T(r; Qa; f).

Let P (w) = ag + ayw + - - - + apw®, Py(w) = Pi(w) + apw®, k' < k, and Q(w) =
bo + byw + - -+ + b,w?. Suppose that Q(w) and Py(w) are relatively prime. Put
w1(2) = Pi(f(2)/Q(f(2)) and wy(2) = arf(2)*/Q(f(2)). We assert that

(3.7) T(r; Qo;wy + wa) < Li{T(r; Qo wr) + T(r; Qo wa) },

with a constant L;, which depends on w; and ws. In fact, we have

1+|U)1|2 # 1—|—|w2|2 #
w1 +w #* < wi +
(w1 + ws) 1w w2 U 14wy + wsf?

When |we(2)] > 2|wy(2)] or [wa(z)| < (1/2)|wi(2)], we have |wy+ws| > (1/2)|ws| >
|wy], or |wy + wsy| > (1/2)|wy| > |ws|. Thus, we obtain in both cases

1 2 1 2
+ [un] <4 and ull 2] <4
1+ |wy + wsl? 1+ |wy + wsl?

When (1/2)|wn (2)] < Jwa(2)] < 2Jwi (2)], we see that [ax|| f(2)[* < 2 35, las|| f(2)]-
Hence |f(z)] < K for some K. Since Q(w) and P>(w) have no common zeros,
we have |Q(w)[* + |Po(w)*> > K* > 0 with some K*, for |w| < K. Further
Q(w)]* < Ky, |Pi(w)]* < Ky for |w]| < K. Hence

L+ |wn|” QUG+ AP _ K1+ Ky

ot wal? - QUG BUEIE S K =
sl QUEDP +af P _ Ko+ ekl
T+ mtwP QU BIEE S K =

with some constant Lo > 4. This implies ((w; + wy)#)? < QL%((wfé)Q + (wf)Q),
from which (3.7) follows. Applying (3.7) and (3.6) repeatedly, and using (3.5), we
obtain

T(r;Q; R(f)) < ngT (r; Qa,%) L32T< kf:k))

max(p,q)

<Li Y (T3 Q0 %)+ T(rQu; 1/ %) < LT(r; Q05 f),

k=0

where L3, L4 and L are constants. Therefore, we have proved Proposition 6. U
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The inequality (3.7) and some estimates, which are satisfied in the argument in
the complex plane, does not always hold in general. We give counter examples in
Section 6, see Examples 1 and 2.

4. PROOF OF THEOREM 1

Proof of Theorem 1. Let T'(r, f) be the characteristic of f(z) in the sense of
Shimizu—Ahlfors [9] p.196. The Schréder function f(z) of (1.3) is known to satisfy

Cir? <T(r, f) < Cor?,  p=logm/log]|s|,

for some constants 0 < Cy < Cy, see [11]. Hence we have

/OO I, f)dr = 0.

rp+1
Dividing C into two sectors Q' = Q(0,7/2) and Q? = Q(w,7/2), we obtain
/WTWW%f)

e dr=00 forj=1orj=2.

When, e.g., it holds for j = 1, we divide Q' into two sectors. Repeating this
procedure, we get a direction d,~ such that, for €} = Q(w*,27/2"), we have

/“TWQEﬁ

o dr = oo

for any n. Take a direction d,, and a sector Q(wp, ). Let 27/2™ < «/8. There
is jo such that |(wy + 27Ajo) — w*| < /8 (mod 27). By (1.3) we obtain, writing
the jo-th iteration of R(w) as R (w), we have f(z) = R(f(s7%z2)). Thus by
Proposition 6, with some constant L(jp),

T(r; % f) < L(jo)T(]s] 7707 Qayas f),

Jo?

hence

dr = o00o.

/Oo T(r; Qaya; f)

By (3.4), it can hold that, with ap (/4 < g < @),

(41) /OO N(T;bi;an;f)dT<OO

rp+l

for at most two values by, by, which proves that any direction is Borel for f(z).
We show that Borel direction is s-Borel direction below. Assume that (4.1)
holds for b; which is not Picard value for f(z). Then in Q(wg, a/4),

> 1
7; 2n (b, /D~
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Put 4 = min{r € N; v > 0, |vA|] < «/8 mod 2r}. From (1.3) we obtain
f(s*z) = R*(f(z)). By Proposition 4, neither the case 2 nor the case 3 in Section 2
occurs here. Hence by = R*(w) has a root b* # by, for which we would have

- 1

a contradiction, if b* # by. Suppose b* = by. Then b* = RF(w) has a root b** #
b* = by, which we can take b** # b;. Then we would have

< 00,

> 1

— e <0
n=0 |Zn(b**7a)|0 7

a contradiction, which proves that there is no exceptional value other than Picard
values. Il

5. PROOFS OF THEOREMS 2 AND 3

Proof of Theorem 2. We suppose that f(d,,) N Jr # 0. Let 29 € d,, be such
that f(z0) € Jr and U = Us, = {z; |2 — 20| < o }. Write ag = sin™*(dg/|20]). Then
V = f(U) is open and V N Jg # (. By Proposition 5, for any w* € C \ E(R),
there exists an intger ng, we have w* € R"(V) = R*"(f(U)) = f(s"U),n > ny,
since f(z) is the Schroder function. Therefore, s"U = {s"z;z € U},n > ny,
contain z, such that f(z,) = w*. Thus f(z) takes w* infinitely often in the sector
Qwo, g) = {z;|arg[z] — wo| < ap}. Since §y is arbitrary and hence oy > 0 is
arbitrary, d,, is an s-Julia direction.

Suppose d,, is an s-Julia direction. Let wy ¢ E(R) be a point of Jg. Let a;, | 0
and write Q(wp, ay,) as §2,. Then there is z9(n) € €2, such that f(zo(n)) = wy. We
can take £(n) € N such that s < |z|/s/™ < s2. For any z € C and m € N, we have
f(z/s™) € R7™(f(2)) by (1.3). Thus, if we write z, = zo(n)/s“™, then 2, € Q,
and f(z,) € R~ (wy) C Jr. Since a,, | 0, we have that z,,, for a subsequence
(ng), converges to a point z* € d,. Since f(z,,) € Jr and f(z,,) — f(z*), we get
f(z*) € Jgr. Hence f(d,,) N Tr # 0.

We show that a Julia direction is an s-Julia direction. Let d, be a Julia direction.
Suppose f(z) would take a ¢ E(R) only finite times in Q(w, ). Since there are
b€ R*(a) and ¢ € R7*(b) such that (b —a)(c — a)(c — b) # 0, we see that f(z)
could take a, b and ¢ only finitely many times in Q(w, a), which contradicts that d,,
is a Julia direction for f(z). Therefore f(z) has infinitely many a-points in Q(w, @)
for any a ¢ E(R). O

Proof of Theorem 3. Suppose ¢ € :7;3(0). There are w, € Jg such that w, —
0, arglw,] — ¢ as v — oo. We can take ¢ > 0 and 7 > 0 such that |w| < € is
mapped into |z| < 7 homeomorphically by w = f(z). If |w,| < €, then there is z,
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with w, = f(z,), hence z, = w,(1 + O(w,)) and
arg[z,] = arglw,] + arg[(1 + O(wy))] = arg[w,] + o(1), asv — oo

By means of Theorem 2, we see that w, = arg[z,| € Iy, since f(z,) = w, € Jr.

We have that J; is closed. Hence ¢ = lim,_,o w, € J. Therefore j}(O) C Jy.
Suppose w € J;. By Theorem 2, there is a point 2y € d,, such that f(z) = wy €
Tr. Put f(z0/s") = w(”. Then by (1.3), w{” € R™™(w,) € Jg. Since f(0) =0,

w(()") tend to 0 as n — oo. Similarly to the case above, we can write

wf” = 21+ 0(0/s") and = =ug”(1+O0(wf")),
and hence
w = arg[z] = arg[wé”)] + arg[l + O(w(()n))] = arg[wo ] + 0,

where 6, — 0 as n — oo. For any € > 0, we choose ng sufficiently large so

that w — 6, = arg[w(()n)] € {arglw] ; w € Jr, 0 <|w| <€}, n > ng. This implies

WEJR(O). Thus Jf CJR(O). O

6. EXAMPLES

First we give an example in connection with Section 2. The following example
shows that (3.7) does not hold in general.

Example 1. We consider functions w;(z) = €?* + ¢ and wq(z) = —e*. For

0 < e < 7/2, we define sectors QZ™? = Q(+m/2,7/2 — €), = Q(0,¢) and
QrF = Q(m, e). We compute

2€2z|2 P
S A2 L tatdd (2 = te®)
t<rjoj<c (1+[€]?)?
4 4t cos§ 2¢ T 4 4t cos e
- _// %tdtd@ < —/ = _tdt = O(1),
T t<r,|0|<c (1 -+ eAtcos ) T Jo (1 +e cose)
and hence

(6.1) T(r; Q% wy) = O(log ).

We choose an € sufficiently small satisfying sine — 2cose < —1. Then by similar
computations, we get

(6.2) T(r; Q% w;) = O(logr).
On the other hand, we assert that for e™% = w; 4+ w,
(6.3) T(r;Q% e ) =T(r; Q7 e %) = (1/2m)r + O(log 7).

In fact, it is well known that T'(r;e™%) = (1/m)r + O(1). It is easy to see that
T(r; Q% e7) = T(r; Q7% ¢7%) = O(log ),
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which gives (6.3). It follows from (6.1), (6.2) and (6.3) that
T(r; Q% w; +wy) < L (T(r; Q% wy) + T (r; Q°; w2))
does not hold for any L.

Let fi(z) and fa(2z) be meromorphic functions in the complex plane. We have
T(r, f1fo) <T(r, f1)+7T(r, f2)+O(1). However, in the arguments in the sector, the
corresponding inequality in terms of the characteristic function defined by (3.1)
does not hold.

Example 2. Put w;(z) = e**e " and wy(z) = e 2. We have
T(r; Q% wiwy) = T(r; Q2 e7%) = (1/27)r + O(log 7).
On the other hand, by similar computations in Example 1, we have
T(r;Q%w;) = O(logr) and  T(r; Q% ws) = O(logr).

Hence T'(r; Q0 wiws) < L(T(r; Q% w1) + T(r; Q% ws)) does not hold for any con-
stant L.

Example 3. Suppose P(w) be a polynomial such that Jp is an analytic curve
or arc. Then there are only finitely many Borel (Julia) directions for the solution
f(z) of (2.1). In this case, we have f(d,,) = Jp if d,, is a Julia direction.

In fact, since Jp is an analytic curve or arc, it can contain at most countably
many double points. Hence it must be a Jordan curve or arc [8, p.140 Theorem
3.

If it is a Jordan arc, then P(w) with deg[P] = m is conjugate to +T7,, (w), where
T, denotes the m-th Tchebychev polynomial [8, p.143 Theorem 5|. Hence Borel
directions of f(z) are finite in number. For example, if P(w) = 4w + w?, then
f(2) = —4sin?(\/—z/4) satisfies f(42) = P(f(2)), f(0) = 0 and f'(0) = 1. In
this case Jp = [—4,0] and the only Borel direction d, is the negative real axis.
Obviously we have f(d,) = Jp.

If Jp is a Jordan curve, then P(w) is conjugate to w™ [8, p.145 Exercise §],
hence the number of Borel directions of f(z) are also finite. Thus it is easily to see
that f(d,,) = Jp. For example, if P(w) = 2w + w?, then f(z) = e* — 1 satisfies
f(2z) = P(f(2)), f(0) =0 and f'(0) = 1. In this case Jp = {Jw + 1] = 1} and the
only Borel directions are dy /s, d3x/2, i.e. positive and negative imaginary axes. It
is obvious that f(d/2) = f(dsx/2) = Tp-

Example 4. Let P(w) = sw + w?, s > 4. Consider the equation
f(s2) = P(f(2)) = sf(z) + f(2),  f(0)=0, f(0) =1

Let O~ ({0}) = U,, P~™(0) be the backward orbit of {0} by P(w). Write P~1(0) =
{bl,bg}, where b1 = O,bg = —s. Write Pil(bl) = {bll,blg}, Pil(bg) = {bgl,bgg},
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where
bin =0, biz=-5—by=-5<0;
—s+sy/1—4/s
2
Then P72(0) = P~'(b;) U P7(by). In general, write P~™(0) = {by,;J, € T,},

where T, denotes the set of n-tuples of 1,2. Suppose —s < b;, < 0. Then
P=7Y0) = {bs,1,bs,2; J € T, }, in which

—s+sy/1+4by, /s
2

hence —s < by, < 0. Thus O~ ({0}) C [—s,0]. Let f(29) = —s = by. Then

f(z0/s™) = by, € O ({0}) for some by, . There is § > 0 such that f(z) is injective

on {z;|z| < ¢}. Take m so large that |zo/s™| < 6 Obviously w = f(z) = z +
> e, agz®, where aj, € R. Hence z = w + Y -, cyw®, where ¢; € R, and

by = ; by = —5 —ba1, —5 < byy, by < 0.

an1 = , anQ = —5—- anl,

_m — an + O(b?]n) S 0,

which shows that zy < 0. Since f(z) takes every a € [—s,0] in [29,0], we get
O~({0}) < f([20,0]). Therefore Jp = O~({0}) C f([20,0]) = f([20,0]) C f(dx),
where d, = {z;arg[z] = 7}. By the above arguments we see that every value in
O~ ({0}) is not taken by f(z) other than in d,, hence d; is the only Julia direction
for f(z). Since the order p(f) =log2/logs of f(z) is less than 1/2, we see easily,
by Wiman’s theorem, e.g. [1, p. 39, Theorem 3.1.5], that Jp C f(d,). Note that
—5/2 ¢ Jp C [—s,0]. In fact, P(—s/2) = —s?/2 + s*/4 = —s*/4 < —s.

Acknowledgement Theorem 2 is due to a suggestion of Professor Walter Berg-
weiler. We express our hearty thanks to him for his cordial and valuable advice.
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