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Abstract

The optical vortex beam carries the orbital angular momentum ` in addition
to the spin angular momentum �. We propose that the existence of �nite `
is demonstrated through modi�ed selection rules for absorption processes of
the optical vortex by the Landau-quantized two-dimensional electron gas. We
show that the lowest LL electrons absorb the optical vortex beams with � = 1
(positive helicity) and ` = 0 or � = �1 (negative helicity) and ` = 2. This
means that the intrinsic spin (helicity) and the orbital angular momentum
of the optical vortex are tied to each other in the absorption processes. It
is also shown that the electric currents induced by the optical vortex are
distributed along the edge of the sample due to cancellation of the bulk
currents. Re�ecting the spatial pro�le of the optical vortex beam, the induced
current disappears when the dark rings of the beam coincide with the circular
edge. This scheme may provide a helicity-dependent absorption using the
optical vortex beam.
Thus, the magnetization can be induced by only the edge current. It is

shown that the induced orbital magnetization also disappears when the dark
ring of the beam coincides with the disk edge.
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Chapter 1

Introduction

Originally, it was suggested by Poynting that circularly polarized light car-
ries spin angular momentum (SAM) equal to �~ per photon, which can
be transferred to medium and produce a mechanical torque in light-matter
interactions[1]. Later, Beth experimentally con�rmed that the angular mo-
mentum transfers from a light in 1935[2, 3]. After about a century, it was
suggested that lights can also carry an orbital angular momentum (OAM) in
addition to SAM by Allen et al.[4]. This part of angular momentum appears
as a modulation of a phase front, so it was dubbed an optical vortex (OV) or
twisted light. It was experimentally demonstrated that a single photon is able
to carry quantized OAM[5]. Theoretical and experimental techniques were
developed to generate OVs in various forms such as the Laguerre-Gaussian
(LG) and the Bessel light beams[4, 6, 7, 8]. These unique forms of light
beams have triggered much interest on the transfer of optical OAM to ma-
terial particles and atoms via light-matter interactions[9, 10].
Mathematically, OV is described by a constant phase pro�le given by

exp(i`� + ikz), where � is the azimuthal angle in the cylindrical coordinate
system for a light beam propagating in the z direction with the wavenumber
k. It carries an intrinsic OAM equal to `~ per photon (` = 0;�1;�2; : : :),
which is independent of the polarization state of light[4]. Geometrically the
phase front of OV is a helix with the winding number determined by `.
The radial dependence of the beam amplitude is typically given in terms of
either Laguerre-Gaussian or Bessel modes. The former has the property of
gradually expanding as the beam propagates, while the latter is di¤raction
free, or propagation invariant[6, 11]. Experimentally, the zero-order Bessel
beams (` = 0) can be created in the back focal plane of a convergent lens
by a plane wave[11], by an axicon lens from a Gaussian beam[12], by the
use of computer-generated holograms[13], or by a Fabry-Perot resonator[14].
The higher-order Bessel beam (` > 0) can also created by using axicon-type
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CHAPTER 1. INTRODUCTION 2

computer-generated holograms[15], in back of an axicon lens illuminated with
a Laguerre-Gaussian beam[16, 17], or by passing an input zero-order Bessel
beam through biaxial crystals[18].
From the point of view of classical mechanics, exerting a torque by trans-

ferring angular momentum from OV has been actively studied, for example,
with particles rotating in an optical tweezers[19, 20, 21, 22], and the laser
ablation technique[23]. In recent years, couplings of the OV beam with con-
densed matter also saw a considerable development, including such topics
as the generation of atomic vortex states by coherent transfer of OAM from
photons to the Bose-Einstein condensate[24], photocurrents excited by the
OV beam-absorption in semiconductors and graphene[25, 26, 27], excitation
of multipole plasmons in metal nanodisks[28], spin and charge transport on a
surface of topological insulator[29], and the generation of skyrmionic defects
in chiral magnets[30] among other things.
However, whether OAM a¤ects any spectroscopic selection rules via opti-

cally induced electronic transitions is still an open question. In 2002, Babiker
et al. stated that an exchange of the optical orbital angular momentum does
not occur in an electric dipole transition in atoms and molecules[31, 32].
Their statement has been considered an interaction of two-particle system
with an optical vortex as

Hint = �
Z
d3r P (r) � Ek`; (1.1)

where P (r) is an electric polarization and an electric �eld of OV in the cylin-
drical coordinates (r?; �; z) is Ek` = "F (r?) ei`�eikzz�i!t. When the center of
mass cylindrical coordinateR = (R?;�R; Rz) and relative cylindrical coordi-
nate q =

�
q?; �q; qz

�
are de�ned, it is shown that the interaction Hamiltonian

in a dipole approximation reduces to

Hdipole
int = e" � qF (R?) ei`�ReikzRz�i!t: (1.2)

The important point is that the interaction Hamiltonian in the dipole ap-
proximation Hdipole

int is independent of the relative coordinate. Concerning
the transition via this Hamiltonian, this signi�es that the optical orbital an-
gular momentum can be transferred only to the center-of-mass motion of the
atoms but not to the relative motion or the internal motion of atoms.
In fact, it is known that, although transferring of the OAM to atomic elec-

trons from the OV beam via the electric quadrupole transition was reported[33,
34, 35], the electric dipole transition has not been reported. Similar in the
coupling of OV with the exciton, the optical OAM can be transferred only
to the exciton center-of-mass motion[36]. These phenomena are analogous to



CHAPTER 1. INTRODUCTION 3

the fact that the cyclotron resonance frequency is independent of short-range
electron-electron interactions[37]. Thus the electric dipole selection rules in
OV-absorption remain unchanged.
Therefore, it naively seems that a free electron is a good candidate of OV

absorption. However, it is shown that a photon cannot be absorbed by a free
electron because the linear momentum conservation condition contradicts
the energy conservation condition[38]. This can be shown as follows. In the
absorption process, the linear momentum conservation and energy one are
written as

pi � pf + p = 0; (1.3)

and
Ef � Ei � cp = 0; (1.4)

where pi and Ei = p2i =2me are the initial momentum and energy of the
electron, pf and Ef = p2f=2me are its �nal momentum and energy, and p and
cp are the linear momentum and energy of the absorbed photon. Since we
have pi = 0 and Ei = 0 in the rest frame of the initial electron, (1.3) and (1.4)
give pf = p and Ef = cp, respectively. Plugging these into Ef = p2f=2me,
we obtain p2f=2me = cpf or pf = 2mec. This suggests that the speed of the
photon would be zero, c = 0, or that the �nal velocity of the electron vf = 2c.
Of course, these are impossible. Thus, it is shown that a free electron cannot
absorb a photon.
To avoid these two bottlenecks, so far as concerning OV absorption processes

in an electronic dipole transition, a bounded electron must be considered. In
this case, it is interesting to see whether these concepts are applicable to
a degenerated two-dimensional electron gas (2DEG) in magnetic �eld. To
our best knowledge, such a system has not been considered. In this dis-
sertation, we will discuss the optical conductivity and the selection rules in
2DEG irradiated with OV carrying OAM. By applying the magnetic �eld,
2DEG is characterized by discrete energy levels with localized semi-classical
electron orbits. It is demonstrated that the bulk current induced by OV
disappears, and only the edge current survives when the 2DEG is irradiated
with a Bessel beam[39]. This situation is similar to the picture of orbital
magnetization[40], which is known to appear due to the existence of the edge
currents. Therefore, in 2DEG we can anticipate an orbital Edelstein e¤ect[41]
where additional magnetization is induced by the OV, which is one of the
central issues of this dissertation.
This dissertation is organized as follows. We will brie�y review the deriva-

tion of the vector potential of circularly polarized Bessel-mode optical vortex
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beams and demonstrate the physical properties of vortex beams in Chapter
2. Also, the optical vortex under the paraxial approximation is studied there.
In Chapter 3, we devote the review of electron in two dimension system

under the magnetic �eld. In particular, we construct the wavefunction and
eigenenergy in symmetric gauge. In addition, the coherent states in symmet-
ric gauge is introduced to show the disappearing the bulk current.
Chapter 4 is a central thesis of this dissertation. First, we investigate

the induced photocurrent and the selection rules by irradiation of circularly
polarized Bessel-mode optical vortex. Then it is shown that the selection
rule by optical orbital angular momentum is modi�ed. After that, we give
the result of the magnetic �eld dependence of the induced photocurrent. We
also mention that the magnetization by irradiation of optical vortex.
We devote Chapter 5 to propose the experimental scheme for consequence

of our theory. We will �rst overview the generation of light beam carrying
orbital angular momentum. Then, we discuss the in�uence of a electron spin
and a disorder in samples to the experiments to measure our consequence.
After that, the concept of experimental setup for the measurement will be
described.
We recapitulate the major conclusion of this dissertation in Chapter 6.



Chapter 2

Optical Vortex

2.1 Circularly Polarized Bessel-mode Optical
Vortex

In 1992, Allen et al. showed that the light beams with an azimuthal phase
term exp (i`�) carries an angular momentum independent of the polariza-
tion state[4]. ` is a topological charge which can be taken an integer value.
Such light beams are called optical vortex (OV) beams. The orbital angu-
lar momentum carried by OV has a value Lz = `~ per photon. When the
topological charge ` is given, the wavefronts of the beams form ` intertwined
helical wavefronts as shown in Fig. 2.1. The sign of orbital angular momen-
tum ` corresponds to the handedness of helical wavefronts with respect to
the beam propagation direction. The optical vortex beam has a remarkable
feature that the helical wavefronts produce the phase singularity on the beam
axis, that is, zero intensity on the axis. Then, the radial pro�le of OV beam
forms an annular distribution. The several radial modes having such features
of OV beams are known: e.g. a Laguerre-Gaussian (LG) mode[4] and Bessel
one[6] among other things.
One of the major phenomena in optics is a di¤raction. The di¤raction is

a phenomenon that, when a wave encounters the obstacle, the parts of the
wavefront usually interfere in some manner and occur a di¤raction pattern.
For a Gaussian light beams, the output laser has a very low divergence but
the di¤raction causes the light to spread. It is important to manipulate
the Gaussian beam to produce a tight focusing beam or collimated one.
However, as one of the features of Bessel mode beams, it is known that the
Bessel beams can overcome the di¤raction, that is, they are non-di¤racting
beams or propagation-invariant beams[11]. Therefore, the Bessel beams are
manageable tools which can be used without an accurately focusing.

5



CHAPTER 2. OPTICAL VORTEX 6

Figure 2.1: Illustrations of wavefronts of `-th order helical beams. The num-
ber of ` corresponds to the number of the spiral arms. The sign of ` indicates
the handedness of wavefronts with respect to the beam direction.

Another feature of Bessel beams is that they can naturally be general-
ized to non-paraxial one because they are exact solutions of a Helmholtz
equation, whereas Gaussian beams including LG-mode ones are essentially
paraxial beam (As we mention in Appendix G, Gaussian beams are derived
from a Helmholtz equation after applying a paraxial approximation k � k?
with the total wavenumber k and transverse wavenumber k?). A paraxial
approximation is crucial for studying quantum mechanical properties of light
to separate a total angular momentum (TAM) into the spin and orbital parts,
since they can be conserved separately for light interacting with particles. In
the paraxial approximation, this separation can be done explicitly, and the
light beam has a well-de�ned spin angular momentum (SAM) related to its
polarization state and OAM determined by the phase modulation. There-
fore, the Bessel beam is expected naturally to generalize a theory built in the
paraxial region to the theory under the non-paraxial region[42, 43].
In consideration of such features, in this dissertation, we adopt the Bessel

mode vortex beam in the paraxial approximation. In this Chapter, as prepa-
ration to discuss the coupling of the Bessel beam with an electron, we review
the derivation and properties of the circularly polarized Bessel mode optical
vortex beam.
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2.1.1 The Helmholtz Equation

We �rst derive a Helmholtz equation, which represents a time-independent
the wave equation, from Maxwell equations. Maxwell equations in vacuum
(� = �0; � = �0; � (r; t) = 0; j (r; t) = 0) in SI units are given by

r � E (r; t) = 0; (2.1)

r �B (r; t) = 0; (2.2)

r� E (r; t) = �@B (r; t)
@t

; (2.3)

r�B (r; t) = 1

c2
@E (r; t)

@t
; (2.4)

where the �rst equation is Gauss law for electricity, the second is Gauss law
for magnetism, the third is Faraday�s law of electromagnetic induction, and
the last one is Ampere-Maxwell law. Plugging the magnetic and electric �elds
described by the vector potential in Coulomb gauge (� (r; t) = 0,r�A (r; t) =
0),

B (r; t) =r�A (r; t) ; (2.5)

E (r; t) = �@A (r; t)
@t

; (2.6)

into Ampere-Maxwell law, we obtain the wave equation for the vector po-
tential,

r� [r�A (r; t)] = � 1
c2
@2A (r; t)

@t2
;

�A (r; t) =
1

c2
@2A (r; t)

@t2
; (2.7)

where � is the Laplace operator and c is the speed of light in a vacuum. If
we assume the monochromatic state of light with the frequency !, A (r; t) =
A (r) e�i!t, it leads to the Helmholtz equation:

�A (r) + k2A (r) = 0 (2.8)

with the square of the wavenumber of light, k2 = !2=c2.
In order to obtain twisted solutions, we have to take account of two ad-

ditional requirements. The �rst is that A (r) is a propagating wave along
z-axis, so it is the eigenvector of the linear momentum operator pz = �i~rz,
and p̂zA (r) = ~kzA (r). The second is that A (r) should also be the eigen-
vector of z-component of the TAM operator

ĴzA (r) = JA (r) ; (2.9)
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where the operator Ĵz = L̂z + Ŝz is given by the corresponding components
of the orbital and spin angular momentum operators:

L̂z = �i~
@

@�
; Ŝz = �i~

0@ 0 1 0
�1 0 0
0 0 0

1A : (2.10)

2.1.2 Scalar Solutions of the Helmholtz Equation

At �rst, we construct the scalar solutions of the Helmholtz equation which
are eigenfunctions of p̂z and L̂z with periodic boundary conditions. We note
that the Laplace operator in cylindrical coordinates is written by

�f =
1

r?

@

@r?

�
r?

@f

@r?

�
+
1

r2?

@2f

@�2
+
@2f

@z2
(2.11)

and assume the scalar function,

 (r) =  (r?) e
i`�eikzz; (2.12)

where ` is an integer and r? is transverse to the propagation direction z.
By plugging the scalar function (2.12) into the Helmholtz equation (2.8), the
radial part of (2.12),  (r?), satis�es the equation

1

r?

@

@r?

�
r?
@ (r?)

@r?

�
� `2

r2?
 (r?) +

�
k2 � k2z

�
 (r?) = 0: (2.13)

Introducing a transverse linear momentum k? = jk?j =
p
k2 � k2z as shown

in Fig. 2.2, we then obtain the Bessel equation for  (r?)

@2 (r?)

@r2?
+
1

r?

@ (r?)

@r?
+

�
k2? �

`2

r2?

�
 (r?) = 0 (2.14)

with k2? > 0. Therefore, we obtain the bounded solution as

 (r?) = NJ` (k?r?) ; (2.15)

or
 (r) =  (rjk?; kz; `) = NJ` (k?r?) e

i`�eikzz; (2.16)

where ` is the orbital angular momentum of light which is the eigenvalue of
the orbital angular momentum operator (2.10) and Jn(x) is the n-th order
Bessel function of the �rst kind. Imposing the normalization condition,Z

 �`0 (r
0jk0?; k0z) ` (rjk?; kz) d3r = 2�� (k? � k0?) � (kz � k0z) �`;`0 ; (2.17)
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Figure 2.2: Relation between wavenumber vector k and the cone angle �k =
tan�1 � with � = k?=kz. kz is the light traveling component of k and k? is
its perpendicular component to kz. The Bessel mode optical vortex can be
viewed as a superposition of plane waves traveling on the cone with the cone
angle �k.

we obtain the normalized scalar solution of the Helmholtz equation (2.8) in
cylindrical coordinates (r?; �; z) can be written in the form

 ` (rjk?; kz) =
r
k?
2�
J` (k?r?) e

i`�eikzz; (2.18)

where we used a formulaZ 1

0

zJn (az) Jn (bz) dz =
� (a� b)

a
: (2.19)

Expansion over plane waves of the scalar function  ` (rjk?; kz) leads to

 ` (rjk?; kz) =
Z

d2k00?
(2�)2

ak?;`(k
00
?)e

ik00�r

=

Z
d2k00?
(2�)2

ak?;`(k
00
?)e

ik00?�r?+ik00z z (2.20)

with k00? = (k
00
? cos�k; k

00
? sin�k; 0) and r? = (cos�; sin�; 0). Each plane wave

component is written by

ak?;`(k
00
?) =

r
2�

k?
(�i)` ei`�k� (k00? � k?) : (2.21)

These expressions show that  ` (rjk?; kz) can be viewed as a superposition
of plane waves with �xed k = jkj =

p
k
002
? + k2z whose direction belongs to

the cone with the cone angle �k = tan�1 k00?=kz as shown in Fig. 2.2.
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We prove this as follows. By plugging Eq. (2.21) into Eq. (2.20), we can
calculate

 ` (rjk?; kz) =
r
2�

k?

(�i)` eikzz

(2�)2

Z 2�

0

d�ke
i`�k

�
Z 1

0

dk00?k
00
?� (k

00
? � k?) e

ik00?r? cos(�k��)

=

r
k?
2�
(�i)` e

ikzz

2�

Z 2�

0

d�ke
i`�keik?r? cos(�k��): (2.22)

Changing the variable as ' = �k � �, we proceed the proof as

 ` (rjk?; kz) =
r
k?
2�
(�i)` e

ikzz

2�
ei`�

Z 2���

��
d'ei`'eik?r? cos'

=

r
k?
2�
(�i)` e

ikzz

2�
ei`�

Z 2�

0

d'ei`'eik?r? cos': (2.23)

As the '�integral gives a Bessel functionZ 2�

0

d'ein'eia cos' = 2�inJn (a) ; (2.24)

we can reproduce

 ` (rjk?; kz) =
r
k?
2�
J` (k?r?) e

i`�eikzz: (2.25)

2.1.3 Vector Solutions of the Helmholtz Equation

When the scalar solution of the Helmholtz equation is considered as a su-
perposition of plane waves, it is important to study the polarization struc-
ture of the plane wave with the propagation vector k. The vector po-
tential of the plane wave has to be an eigenvector of the SAM operator,
ŜzA

pl (r) = ~SApl (r). For the plane wave traveling along k = (0; 0; kz), the
spin angular momentum operators Ŝz has the following eigenvectors:

�0 =

0@00
1

1A for S = 0;

�� = �
1p
2

0@ 1
�i
0

1A for S = �1; (2.26)
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and the vector potential is then given by Apl(r) = ��A0e
ikzz, where A0 is a

constant.
When the plane wave travels in arbitrary direction k, which does not

necessary coincide with the z-axis, k = k(cos�k sin �k; sin�k sin �k; cos �k),
its polarization vector "k;� can be found from original polarization vectors
�� by rotating them with rotation matrix

R̂k = R̂�kR̂�k

=

0@cos�k � sin�k 0
sin�k cos�k 0
0 0 1

1A0@ cos �k 0 sin �k
0 1 0

� sin �k 0 cos �k

1A
=

0@cos�k cos �k � sin�k cos�k sin �k
sin�k cos �k cos�k sin�k sin �k
� sin �k 0 cos �k

1A ; (2.27)

which gives

"k;� = R̂k�� = �
�p
2

0@cos�k cos �k � i� sin�k
sin�k cos �k + i� cos�k

� sin �k

1A : (2.28)

Then the vector potential for the plane wave traveling along k is given by

Apl(r) = "k;�A0e
ik�r; "k;� � k = 0; (2.29)

where the Coulomb gauge is used. The polarization vector "k;� then describes
photon carrying a helicity � = �1. We can expand "k;� over the orthonormal
basis f�SgS=0;�1 of the eigenvectors of the SAM operator Ŝz:

"k;� =
1p
2

0@�1
2
(1 + � cos �k) e

�i�k + 1
2
(1� � cos �k) e

i�k

� i
2
(1 + � cos �k) e

�i�k � i
2
(1� � cos �k) e

i�k

� sin �k

1A
=

1p
2

0@ �c+1;�e�i�k + c�1;�e
i�k

�ic+1;�e�i�k � ic�1;�e
i�kp

2c0;�

1A
=
X

S=0;�1
cS;�e

�iS'k�S; (2.30)
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where the expansion coe¢ cients are given by

c0;� =
�p
2
sin �k =

�p
2

k?p
k2? + k2z

; (2.31)

c+1;� =
1

2
(1 + � cos �k) =

1

2

 
1 +

�kzp
k2? + k2z

!
; (2.32)

c�1;� =
1

2
(1� � cos �k) =

1

2

 
1� �kzp

k2? + k2z

!
: (2.33)

and we used �2 = 1.
Now we can �nd the expression for the vector potential for OV based on

the expansion over the plane waves in Eq. (2.20) and taking into account
that each plane wave is characterized by its own polarization vector "k;�:

AOV (r) = AOV (rjk?; kz; J; �)

= A0

Z
d2k00?
(2�)2

ak?;J(k
00
?)"k;�e

ik00?�r?+ik00z z; (2.34)

where we introduced J as the eigenvalue of the TAM operator Ĵz = L̂z + Ŝz.
Integrating over k00?, we �nally obtain the vector potential of the Bessel mode
OV[42, 43],

AOV (rjk?; kz; J;�) = A0

r
k?
2�

X
S=0;�1

�S(�i)ScS;�JJ�S(k?r?)ei(J�S)�eikzz:

(2.35)

2.1.4 Paraxial Approximation

In general, it is not always true that an optical ray propagates along the
optical axis of the optics system. However, in a geometric optics, if the ray
propagates almost along the optical axis, so-called the paraxial approxima-
tion, it is known that such a ray will simplify the calculation of the ray
path. The paraxial approximation allows three approximations, sin � � �,
cos � � 1, and tan � � � for the �rst order approximation, where � is an angle
between the ray propagation and optical axis[44]. The tangent in the �rst-
order approximation is accurate within about 1% for angles under about 10�.
Also in our case, the paraxial approximation is crucial. In the non-paraxial
region, the spin angular momentum and orbital one are mixed and the total
angular momentum is only conserved as shown in the previous subsections.
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To conserve the spin and orbital angular momentum separately, we need to
apply a paraxial approximation.
The degree of the paraxial approximation can be characterized by a pa-

rameter
� = k?=kz = tan �k: (2.36)

If we choose the angle �k = 10� to the tangent accuracy within 1% in the
�rst order, the parameter � gives about 0:17. Consequently, we will employ
� = 0:1 for the numerical calculation in many cases.
To obtain the expression of vector potential of optical vortex in paraxial

approximation, we assume that the longitudinal momentum of the photon is
much greater than its transverse momentum, kz � k?. Then, the expansion
coe¢ cients become cS;� � �S;�, and we obtain the vector potential in the
form:

AOV(rjk?; kz; `+ �; �) � ��A0
r
k?
2�
(�i)�J`(k?r?)ei`�eikzz (2.37)

� AOV
`;� (r) ;

where we introduced a OAM quantum number, ` = J � �. Moreover, if
we take the limit k? ! 0 with r? being �xed, then the Bessel function
gives J`(k?r?) ! �`;0, and we recover a plane wave solution with J = �
propagating along the z-axis.
The Bessel-mode OV exhibits a feature of being di¤raction free and has

a phase singularity. The �rst feature can easily be seen by using Eq. (2.37).
The intensity of the vector potential, I / jAj2, is independent of z. The
second feature, the phase singularity, is located on the beam axis where
the intensity becomes zero. To demonstrate a transfer of OAM, the target
particles are usually located in non-zero intensity region o¤ the beam axis
and dark rings. The radius of i-th dark ring of the higher-order Bessel beam
is given by

r`;i? =
(the i-th zeros of `-th order Bessel function)

k?
; (2.38)

which is determined by J`(k?r
`;i
? ) = 0. For example, the central core size

of the zero-order Bessel beam is given by r0;1? = 2:404=k?. We exhibit some
examples of the intensity distribution of the Bessel-mode OV, and the de�-
nition of the dark ring radius and the central core spot size in Fig. 2.3. We
note that the Bessel-mode OV even with ` = 0 has the dark rings or the
annular distribution, This feature is also the crucial di¤erence with the plane
wave.
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Figure 2.3: Some examples of the intensity distribution of the Bessel-mode
optical vortex, jJ`(x)j2. (a) ` = 0. The central core spot size is given by the
�rst zeros of J0(x). (b) ` = 1. The dark ring radius is given by i-th zeros of
J`(x). (c) ` = 2, (d) ` = 5.

2.2 Physical Properties of Optical Vortex

We have seen that optical vortices have characteristic features, e.g. the phase
singularity, bright and the dark rings, etc. Since the electric �eld, magnetic
one, Poynting vector, and energy density are fundamental physical quantities,
it is important to see their physical properties of OV. It is useful to describe
such a helical wavefront by a cylindrical coordinates. In the cylindrical co-
ordinates, the vector potential of the circularly polarized optical vortex in
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non-paraxial region is given by

AOVr? (r; tjk?; kz; J; �)

=
ip
2
A0

r
k?
2�
(c+1;�JJ�1 (k?r?) + c�1;�JJ+1 (k?r?)) e

i(J�+kzz�!t);

AOV� (r; tjk?; kz; J; �)

= � 1p
2
A0

r
k?
2�
(c+1;�JJ�1 (k?r?)� c�1;�JJ+1 (k?r?)) e

i(J�+kzz�!t);

AOVz (r; tjk?; kz; J; �)

= A0

r
k?
2�
c0;�JJ (k?r?) e

i(J�+kzz�!t): (2.39)

The physical electric �eld, E = �Re _A =Re [i!A], is obtained as

EOVr? (r; tjk?; kz; J; �)

= � 1p
2
A0!

r
k?
2�
(c+1;�JJ�1 (k?r?) + c�1;�JJ+1 (k?r?)) cos (J�+ kzz � !t) ;

EOV� (r; tjk?; kz; J; �)

=
1p
2
A0!

r
k?
2�
(c+1;�JJ�1 (k?r?)� c�1;�JJ+1 (k?r?)) sin (J�+ kzz � !t) ;

EOVz (r; tjk?; kz; J; �)

= �A0!
r
k?
2�
c0;�JJ (k?r?) sin (J�+ kzz � !t) : (2.40)

By using the formula of vector rotation,

r�C

=

�
1

r?

@Cz
@�

� @C�
@z

�
êr+

�
@Cr?
@z

� @Cz
@r?

�
ê�+

�
1

r?

@ [r?C�]

@r?
� 1

r?

@Cr?
@�

�
êz;

(2.41)

we can easily show,
r�AOV = �kAOV (r; t) : (2.42)
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We thus obtain the physical magnetic �eld, B = Re [r�A], as

BOV
r?
(r; tjk?; kz; J; �)

= � 1p
2
A0�k

r
k?
2�
(c+1;�JJ�1 (k?r?) + c�1;�JJ+1 (k?r?)) sin (J�+ kzz � !t) ;

BOV
� (r; tjk?; kz; J; �)

= � 1p
2
A0�k

r
k?
2�
(c+1;�JJ�1 (k?r?)� c�1;�JJ+1 (k?r?)) cos (J�+ kzz � !t) ;

BOV
z (r; tjk?; kz; J; �)

= A0�k

r
k?
2�
c0;�JJ (k?r?) cos (J�+ kzz � !t) ; (2.43)

where we used the formula of Bessel functions,

z
d

dz
J� (z)� �J� (z) = �zJ��1 (z) : (2.44)

Because the Poynting vector is de�ned by

P =
1

�0
E�B

=
1

�0
Re [i!A]� Re [r�A] ; (2.45)

we obtain its explicit form as

Pr? =
1

�0

�
EOV� BOV

z � EOVz BOV
�

�
= 0;

P� =
1

�0

�
EOVz BOV

r � EOVr BOV
z

�
=

�p
2

A20ck
2k?

2��0
c0;�JJ (k?r?) [c+1;�JJ�1 (k?r?) + c�1;�JJ+1 (k?r?)] ;

Pz =
1

�0

�
EOVr BOV

� � EOV� BOV
r

�
= �

A20ck
2k?

4��0

�
(c+1;�)

2 J2J�1 (k?r?)� (c�1;�)
2 J2J+1 (k?r?)

�
; (2.46)

where we note that the wavenumber vector k is related to Poynting vector
as ~k = P=c2. On the other hands, because the energy density is de�ned by

u =
1

2

�
"0E

2 +
1

�0
B2
�
; (2.47)
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we obtain its explicit form as

u =
A20!

2k?
4��0c

2

�
(c+1;�)

2 J2J�1 (k?r?) + (c�1;�)
2 J2J+1 (k?r?) + (c0;�)

2 J2J (k?r?)
�
:

(2.48)

2.2.1 Paraxial Approximation

In the paraxial region, because the expansion coe¢ cient reduces to cS;� = �S;�
with � = �1, we can easily show the expressions of the physical electric and
magnetic �elds from Eqs. (2.40) and (2.43). First, the vector potential in
paraxial approximation in cylindrical coordinates can be expressed by

AOVr?;`;� (r; t) = A0
ip
2

r
k?
2�
J`(k?r?)e

i[(`+�)�+kzz�!t];

AOV�;`;� (r; t) = ��A0
1p
2

r
k?
2�
J`(k?r?)e

i[(`+�)�+kzz�!t];

AOVz;`;� (r; t) = 0: (2.49)

The physical electric �eld is then obtained as

Er?`;� (r; t) = �A0
!p
2

r
k?
2�
J`(k?r?) cos [kzz + (`+ �)�� !t] ;

E�`;� (r; t) = �A0
!p
2

r
k?
2�
J`(k?r?) sin [kzz + (`+ �)�� !t] ;

Ez`;� (r; t) = 0: (2.50)

The physical magnetic �eld is also obtained as

Br?
`;� (r; t) = ��A0

kzp
2

r
k?
2�
J`(k?r?) sin [kzz + (`+ �)�� !t] ;

B�
`;� (r; t) = �A0

kzp
2

r
k?
2�
J`(k?r?) cos [kzz + (`+ �)�� !t] ;

Bz
`;� (r; t) = 0: (2.51)

The Poynting vector thus has almost z component as

P r?`;� (r; t) = 0;

P �`;� (r; t) = 0;

P z`;� (r; t) = A20
!k?kz
4��0

J2` (k?r?) : (2.52)
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The energy density is obtained as

u� = A20
k?k

2
z

4��0
J2` (k?r?) : (2.53)

Noting that ! = ck � ckz in paraxial approximation, we can see that the
equation of continuity for energy is satis�ed.
Figs. 2.4 - 2.9 show the snapshots of electric �eld of the optical vortex

under the paraxial approximation E`;� (r; t). We graphically see that the
helicity of the optical vortex corresponds to the rotation direction at each
point, whereas the orbital angular momentum manifests the winding number
around the phase singularity (x; y) = (0; 0).
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Figure 2.4: Snapshots of the electric �eld of the optical vortex with ` = 0
and � = 1. (a) for t = 0, (b) t = 1

6
T , (c) t = 1

3
T , (d) t = 1

2
T , (e) t = 2

3
T , and

(f) t = 5
6
T , where T = 2�=! is a period.
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Figure 2.5: Snapshots of the electric �eld of the optical vortex with ` = 0
and � = �1. (a) for t = 0, (b) t = 1

6
T , (c) t = 1

3
T , (d) t = 1

2
T , (e) t = 2

3
T ,

and (f) t = 5
6
T , where T = 2�=! is a period.
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Figure 2.6: Snapshots of the electric �eld of the optical vortex with ` = 1
and � = 1. (a) for t = 0, (b) t = 1

6
T , (c) t = 1

3
T , (d) t = 1

2
T , (e) t = 2

3
T , and

(f) t = 5
6
T , where T = 2�=! is a period.
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Figure 2.7: Snapshots of the electric �eld of optical vortex with ` = 1 and
� = �1. (a) for t = 0, (b) t = 1

6
T , (c) t = 1

3
T , (d) t = 1

2
T , (e) t = 2

3
T , and

(f) t = 5
6
T , where T = 2�=! is a period.
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Figure 2.8: Snapshots of the electric �eld of the optical vortex with ` = �1
and � = 1. (a) for t = 0, (b) t = 1

6
T , (c) t = 1

3
T , (d) t = 1

2
T , (e) t = 2

3
T , and

(f) t = 5
6
T , where T = 2�=! is a period.
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Figure 2.9: Snapshots of the electric �eld of the optical vortex with ` = �1
and � = �1. (a) for t = 0, (b) t = 1

6
T , (c) t = 1

3
T , (d) t = 1

2
T , (e) t = 2

3
T ,

and (f) t = 5
6
T , where T = 2�=! is a period.



Chapter 3

Two Dimensional Electron Gas

The two dimensional electron gas (2DEG) is a mightily simple system but
generates curious phenomena. When a magnetic �eld is applied perpendic-
ular to the surface, whereas, in a classical picture, the magnetic �eld causes
an orbital motion of the electron due to the Lorentz force perpendicular to
their direction of motion (cyclotron motion), in a quantum mechanical pic-
ture, the energy spectrum for its orbit is quantized (so-called Landau level,
LL). In consequence, the 2DEG at low temperatures (< 4 K) in a strong
perpendicular magnetic �eld (typically, B > 1 T) occurs a quantum Hall
e¤ect. In 1980, von Klitzing, Dorda and Pepper [45] observed an integer
quantum Hall e¤ect which is a Hall conductance of such a system (which is
the conductance transverse to an external electric �eld applied to the con-
ductor and to an applied magnetic �eld perpendicular to the electric �eld)
is an integer multiple of e2=h, where e is the elementary charge and h is the
Planck constant. It is also known that Tsui, Stormer and Gossard discovered
that the Hall conductance at lower temperatures and in clean samples can
be a rational fraction of e2=h in 1982 [46].
The 2DEG comes to realization at the interface between two semiconduc-

tors or between a semiconductor and an insulator. That is to say, it exists
in the semiconductor with the lower-energy conduction band, but is con�ned
in a narrow potential well near the interface. Such a con�nement is caused
by the electrostatic attraction to a positively charged layer away from the
interface (see Fig. 3.1). The electrons in the 2DEG typically move freely
in the plane of the interface. Especially, GaAs/AlGaAs heterostructures are
more widely used because of higher mobilities (or very long mean free paths
of electron).
In this Chapter, we review the physics of the 2DEG under the magnetic

�eld at such interfaces. First, we introduce the classical motion of the elec-
trons under the magnetic �eld before the quantum treatment. To treat it in

25
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Figure 3.1: Schematics of GaAs/AlGaAs heterostructure. The upper half
shows the real space structure of the GaAs/AlGaAs layers. The lower half
shows the corresponding structure of the energy levels. 2DEG exists at the
interface painted in black.

quantum mechanics, we describe it in Lagrangian formalism and Hamilton
one. Then, we give the review of quantum treatment of the 2DEG under
the magnetic �eld. Through seeing the semi-classical states of it, so-called
coherent states, we see that, because circular currents formed by coherent
states are canceled out at contact points, the current �owing in the bulk
does not exist. As a result, we see that the current �owing on the system
should survive.

3.1 Electron inMagnetic Field (Classical Treat-
ment)

Before a quantum treatment of the motion of a charged particle (e.g. elec-
tron) in a magnetic �eld, we review classical treatment of the motion.
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3.1.1 Cyclotron Motion

Because the charged particle in a magnetic �eld, B = Bêz, experiences the
Lorentz force F = �e_r�B, the particle moves on a circle (Larmor motion).
Since the Lorentz force is given by the cross product, the equation of motion
is then given by

�x = �!c _y;
�y = !c _x; (3.1)

where !c = eB=me is a cyclotron frequency with charge �e (e > 0) and an
electron mass me. The integral of this equation is given by

_x = �!c (y � y0) ;

_y = !c (x� x0) ; (3.2)

where r0 = (x0; y0) is a constant of motion. By introducing a variable � =�
�x; �y

�
= r � r0, we can separate Eq. (3.2) into each component. By

plugging � into (3.2),

��x = �!2c�x;
��y = �!2c�y; (3.3)

we then obtain the solution as

�x = � cos (!ct+ 
) ;

�y = � sin (!ct+ 
) ; (3.4)

that is,

x (t) = x0 + � cos (!ct+ 
) ;

y (t) = y0 + � sin (!ct+ 
) ; (3.5)

where � is the Larmor radius (cyclotron radius) and 
 is an arbitrary angle
(a constant of motion). We �nd that the constant of motion r0 previously
introduced means the guiding center. Therefore, the electron moves on a
circle of radius � around the guiding center r0 as shown in Fig. 3.2.

3.1.2 Lagrangian Formalism

Lagrangian of the electron system under the magnetic �eld is described by

L =
1

2
me _r

2 � eA (r) � _r; (3.6)
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Figure 3.2: The trajectory of cyclotron motion with radius � around the
guiding center r0, governed by the equation of motion (3.1)

where A (r) is a time-independent vector potential describing the external
magnetic �eld. The equation of motion is obtained from Euler-Lagrange
equation:

d

dt

@L

d_r
� @L

@r
= 0

me�r+ e _rj
@

@r
Aj (r) = 0�

me�x+e

�
_xr �A (r)�

�
_x
@

@y
+ _y

@

@x

�
Ay (r)+

�
_z
@

@x
� _x @

@z

�
Az (r)

��
êx

+ (êy term) + (êz term) = 0: (3.7)

We here assume the Coulomb gauge, r �A (r) = 0. Then we can proceed to
calculate this equation as the following,n
me�x�e (_r�r)z Ay (r)+e (_r�r)y Az (r)

o
êx+ (êy term) + (êz term) = 0

[me�x+ e f(_r�r)�A (r)gx] êx + (êy term) + (êz term) = 0
me�r+ e_r� (r�A (r)) = 0: (3.8)
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Since the magnetic �eld B can be represented by vector potential A (r) as
B (r) =r�A (r), we can reproduce the motion of equation with the Lorentz
force,

me�r+ e_r�B (r) = 0: (3.9)

We can describe the canonical (gauge-dependent) momentum as

p =
@L

@ _r
= me _r� eA (r) : (3.10)

3.1.3 Gauge Invariance

From the requirement that observables (e.g. magnetic �eld) are independent
of gauge choice (so-called gauge invariant), we can de�ne a gauge transforma-
tion of the vector potential as A0 = A+r�, where � is an arbitrary (gauge)
function satisfying r�r� = 0. Although the choice of the gauge function
can arbitrarily be de�ned, it is useful to adopt the Coulomb gauger �A = 0
in non-relativistic physics. However, we note that this gauge condition can
not completely determine the gauge function.
It is known that two gauge choices are especially useful in quantum treat-

ment of 2D-electron in the magnetic �eld. The �rst is the Landau gauge (e.g.
for a rectangular sample),

AL = B (�y; 0; 0) ; (3.11)

and another is the symmetric gauge (e.g. for a circular disk sample),

AS =
B

2
(�y; x; 0) : (3.12)

The gauge function which transforms between the two gauges is then obtained
by

r� = AS �AL

=
B

2
(y; x; 0) ; (3.13)

that is

� =
B

2
xy: (3.14)

The canonical momenta in equation (3.10) are not clearly gauge invariant.
In contrast, the velocity _r must be gauge invariant. The gauge invariant
momentum (or mechanical momenta) are thus given by

� � me _r = p+ eA: (3.15)
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In particular, we can explicitly write it by components, � =
�
�x; �y

�
= r�r0,

�x = �me!c�y;

�y = me!c�x: (3.16)

3.1.4 Hamiltonian Formalism

The Hamiltonian for the electron gas under the magnetic �eld is derived from
the Lagrangian (3.6) by a Legendre transformation,

H = p � _r� L

=
1

2me

[p+eA (r)]2 : (3.17)

When we use the relative variable (Larmor radius vector) �, we can rewrite
the Hamiltonian as

H =
1

2
me!

2
c

�
�2x + �2y

�
; (3.18)

where we note that the variable � is written by the variables in phase space
(r;p) as

�x =
1

me!c
[py + eAy (r)] ;

�y = � 1

me!c
[px + eAx (r)] ; (3.19)

3.2 Landau-Quantized-Electron in Symmet-
ric Gauge

As well-known, in quantum mechanics, the energy spectrum of an electron in
two dimension under the magnetic �eld is quantized[47]. The quantized en-
ergy levels of two dimensional electron gas are given by EN = ~!c (N + 1=2),
which usually appear by solving the Schrödinger equation in the Landau�s
gauge (AL = B (�y; 0; 0)), where N = 0; 1; 2; : : : is the LL index. However,
to see the quantum selection rule of interaction of electron with optical vor-
tex beam carrying the orbital angular momentum, the symmetric gauge in
the cylindrical system becomes a natural choice. Then the electron angular
momentum becomes good quantum number. We thus adopt the symmetric
gauge,

Aext(r) = AS =

�
�By
2
;
Bx

2
; 0

�
; (3.20)
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which gives the external magnetic �eld along z direction,

B (r) =r�Aext (r)

=

�
@Aexty
@x

� @Aextx
@y

�
êz

= B: (3.21)

As discussed the previous section, the Hamiltonian of electron in the magnetic
�eld along z direction is given by

H0 =
1

2me

�
�i~r+ eAext(r)

�2
(e > 0): (3.22)

Here, we derive the commutation relation of the Hamiltonian H0 with posi-
tion operator r,

[H0; r] = H0r� rH0

= � i~
me

�
�i~r+ eAext (r)

�
: (3.23)

This commutation relation is used for calculation of the matrix elements of
interaction with optical vortex.
Before solving the Schrödinger equation, H0	 = E	, we describe the

Hamiltonian (3.22) by Cartesian coordinates,

H0 =
~2

2me

"�
�i @
@x
� eB

2~
y

�2
+

�
�i @
@y
+
eB

2~
x

�2
+

@2

@z2

#
: (3.24)

We can separate this Hamiltonian into 2D part, H2D
0 , and a plane wave part,

Hplane
0 , that is,

H0 = H2D
0 +Hplane

0 ;

H2D
0 =

~2

2me

"�
�i @
@x
� eB

2~
y

�2
+

�
�i @
@y
+
eB

2~
x

�2#
;

Hplane
0 =

~2

2me

@2

@z2
: (3.25)

By focusing on the 2D part H2D
0 , we can obtain the solution of two di-

mensional electron gas (2DEG) under the magnetic �eld, that is, that of
Landau-quantized electrons. We will derive the eigenenergy and wavefunc-
tion step-by-step. We �rst introduce the magnetic length lB =

p
~=eB and

the cyclotron frequency !c = eB=me,

H2D
0 =

~!c
2

"�
�ilB

@

@x
� 1

2lB
y

�2
+

�
�ilB

@

@y
+

1

2lB
x

�2#
: (3.26)
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We further introduce the dimensionless variables x = x=lB and y = y=lB,

H2D
0 =

~!c
2

�
�
�
@2

@x2
+

@2

@y2

�
+ i

�
y
@

@x
� x

@

@y

�
+
1

4

�
x2 + y2

��
: (3.27)

To derive the wavefunction and eigenenergy in cylindrical coordinates, we
describe x and y by cylindrical coordinates,

x = �� cos�;

y = �� sin�; (3.28)

respectively, where �� = (x2 + y2)
1=2 and � = arctan (y=x). Then the di¤er-

ential operators are written in the cylindrical coordinates as
@

@x
= cos�

@

@��
� sin�

��

@

@�
;

@

@y
= sin�

@

@��
+
cos�

��

@

@�
;

@2

@x2
+

@2

@y2
=

@2

@��2
+
1

��

@

@��
+
1

��2
@2

@�2
;

y
@

@x
� x

@

@y
= � @

@�
: (3.29)

We can check these expressions as the followings. The variable transfor-
mations are given by

@��

@x
=

@

@x

�
x2 + y2

�1=2
=
x

��
= cos�;

@��

@y
=
y

��
= sin�;

@�

@x
=

@

@x

�
arctan

y

x

�
=

�y
x2 + y2

= �sin�
��

;

@�

@y
=

@

@y

�
arctan

y

x

�
=

x

x2 + y2
=
cos�

��
: (3.30)

The �rst two di¤erential operators in Eq. (3.29) can be derived by

@

@x
=
@��

@x

@

@��
+
@�

@x

@

@�

= cos�
@

@��
� sin�

��

@

@�
;

@

@y
=
@��

@y

@

@��
+
@��

@y

@

@�

= sin�
@

@��
+
cos�

��

@

@�
: (3.31)
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And the last two di¤erential operators in Eq. (3.29) can also be derived by

@2

@x2
+

@2

@y2
=

�
cos�

@

@��
� sin�

��

@

@�

�2
+

�
sin�

@

@��
+
cos�

��

@

@�

�2
=

@2

@��2
+
1

��

@

@��
+
1

��2
@2

@�2
; (3.32)

and

y
@

@x
� x

@

@y
= �� sin�

�
cos�

@

@��
� sin�

��

@

@�

�
� �� cos�

�
sin�

@

@��
+
cos�

��

@

@�

�
= � @

@�
: (3.33)

We thus obtain the 2D part of Hamiltonian in the cylindrical coordinates,

H2D
0 =

~!c
2

�
� @2

@��2
� 1
��

@

@��
� 1

��2
@2

@�2
� i

@

@�
+
1

4
��2
�
: (3.34)

We will look for the solutions of the Schrödinger equation, H2D
0 	(��; �) =

E	(��; �). For the angular part of 	, we use the 2�-periodic boundary
condition,

	(��; �) =
1p
2�
eim�R(��); m = 0;�1;�2; � � � : (3.35)

Then, we explicitly write the Schrödinger equation as a di¤erential equation:

@2R(��)

@��2
+
1

��

@R(��)

@��
+

�
2"� m2

��2
�m� ��

2

4

�
R(��) = 0; (3.36)

where we denoted " = E=~!c for simplicity.
We should choice the natural boundary conditions for this equation:

1. R(0) is �nite.

2. R(��) is continuous and smooth.

3. R(1) is �nite.

When we change the variable as z = ��2, that is, �� =
p
z, we then have

R(��) = R(
p
z) � eR(z);

@R(��)

@��
=
@ eR(z)
@��

=
@ eR(z)
@z

@z

@��
= 2

p
z
@ eR(z)
@z

;

@2R(��)

@��2
=

@

@��

 
2��
@ eR(z)
@z

!
= 4z

@2 eR(z)
@z2

+ 2
@ eR(z)
@z

: (3.37)
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Thus, Eq. (3.36) can be rewritten by the variable change as

@2 eR(z)
@z2

+
1

z

@ eR(z)
@z

+

�
"

2z
� m2

4z2
� m

4z
� 1

16

� eR(z) = 0: (3.38)

Now, we consider the asymptotic behavior at z =1. In the limit z !1,
because of the condition 3, we have

@2 eR(z)
@z2

� 1

16
eR(z) = 0: (3.39)

Therefore, this equation has the solution likeeR(z) = Ce�
z
4 ; (3.40)

where we introduced the constant of integration as C. Next, let us �nd the
solution in the form eR(z) = e� z

4 ew(z). Then it satis�es
@ eR(z)
@z

= e�
z
4
@ ew(z)
@z

� 1
4
e�

z
4 ew(z);

@2 eR(z)
@z2

= e�
z
4
@2 ew(z)
@z2

� 1
2
e�

z
4
@ ew(z)
@z

+
1

16
e�

z
4 ew(z): (3.41)

Then, plugging these expressions into Eq. (3.38), we obtain a di¤erential
equation for ew(z),

4z
@2 ew(z)
@z2

+ (4� 2z) @ ew(z)
@z

+

�
2"� m2

z
�m� 1

� ew(z) = 0: (3.42)

Next, we consider z ! 0 case. Because of condition 1, choosing dominant
factors in each term in Eq. (3.42), we obtain an equation as

4z2
@2 ew(z)
@z2

+ 4z
@ ew(z)
@z

�m2 ew(z) = 0: (3.43)

To solve Eq. (3.43), we take the solution in the form ew(z) = z�. Then, since
it satis�es

@ ew(z)
@z

= �z��1;

@2 ew(z)
@z2

= �(�� 1)z��2; (3.44)

we obtain the solution � by plugging these expressions into Eq. (3.43) as the
following:

4�2 �m2 = 0;
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which gives

� = �jmj
2
: (3.45)

Since the solution � = � jmj =2 diverges in the limit z ! 0, we must adopt
the solution � = + jmj =2.
Finally, let us �nd the solution in the form ew(z) = z

jmj
2 w(z), then it

satis�es

@ ew(z)
@z

=
jmj
2
z
jmj
2
�1w(z) + z

jmj
2
@w(z)

@z
;

@2 ew(z)
@z2

= z
jmj
2
@2w(z)

@z2
+ jmj z

jmj
2
�1@w(z)

@z
+
jmj
2

�
jmj
2
� 1
�
z
jmj
2
�2w(z):

(3.46)

Plugging these expressions into Eq. (3.42), we then obtain

z
@2w(z)

@z2
+
�
jmj+ 1� z

2

� @w(z)
@z

+

�
"

2
� m

4
� jmj

4
� 1
4

�
w(z) = 0: (3.47)

Replacing the variable z = z
2
, that is, z = 2z, we have

w(z) = w(2z) � v(z);

@w(z)

@z
=
@v(z)

@z

@z

@z
=
1

2

@v(z)

@z
;

@2w(z)

@z2
=
1

2

@

@z

@v(z)

@z
=
1

4

@2v(z)

@z2
: (3.48)

Thus, plugging these expressions into Eq. (3.47), we �nally obtain the equa-
tion for generalized Laguerre polynomials

z
@2v(z)

@z2
+ (jmj+ 1� z)

@v(z)

@z
+

�
"� jmj+m+ 1

2

�
v(z) = 0: (3.49)

The solutions of the associated Laguerre equations which are bounded exist
for

"� jmj+m+ 1

2
= n; n = 0; 1; 2; � � � ;

v(z) = Ljmjn (z); (3.50)

where the associated Laguerre polynomials Lkn(x) are related to the Laguerre
polynomials Ln(x) by Lkn(x) = (�1)k d

dxk
Ln+k(x) with k � 0. We here sum-
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marize variable notations,

z = ��2 and R(��) = eR(z)
+eR(z) = e� z

4 ew(z)
+ew(z) = z

jmj
2 w(z)

+

z =
z

2
and v(z) = w(z): (3.51)

Thus we obtain the the radial part of the wavefunction in the original notation
� as

R(��) = N��jmje�
��2

4 Ljmjn

�
��2

2

�
; (3.52)

that is,

R(�) = N exp

�
� �2

4l2B

��
�

lB

�jmj
Ljmjn

�
�2

2l2B

�
: (3.53)

To determine the normalization constant, we use the orthonormality of L(�)n (x):Z 1

0

dxe�xx�L(�)n (x)L
(�)
m (x) =

�(�+ n+ 1)

n!
�nm (3.54)

and Z 1

0

d��R(�)2 = 1: (3.55)

By calculating the normalization condition as the following,

1 = N2

Z 1

0

d�� exp

�
� �2

2l2B

��
�

lB

�2jmj �
Ljmjn

�
�2

2l2B

��2
= N2l2B2

jmj�(n+ jmj+ 1)
n!

; (3.56)

we thus obtain the normalization constant

N =

�
n!

(n+ jmj)!

� 1
2 1

2
jmj
2 lB

: (3.57)
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We here summarize the normalized wave function for 2DEG,

Enm = ~!c
�
n+

jmj+m

2
+
1

2

�
; (3.58)

n = 0; 1; 2; � � � ; and m = 0;�1;�2; � � � ;

	nm(�; �) =
1p
2�
eim�Rnm(�); (3.59)

Rnm(�) = Nnm exp

�
� �2

4l2B

��
�

lB

�jmj
Ljmjn

�
�2

2l2B

�
; (3.60)

Nnm =

�
n!

(n+ jmj)!

� 1
2 1

2
jmj
2 lB

: (3.61)

In two dimension, when we denote that m represents a magnetic quantum
number, jmj represents an azimuthal quantum number.
On the other hands, we consider the plane wave partHplane

0 or z-direction-
dependent part. This describes the Hamiltonian that the electron travels
along z direction as a plane wave. We assume the electron is in a cylinder
with thickness d. By solving the Schrödinger equation with the Hamiltonian,

Hplane
0 =

~2

2me

@2

@z2
; (3.62)

we obtain the plane wave solution as

	l (z) =
1p
d
eiklz; (3.63)

El =
~2k2l
2me

=
~2

2me

�
l�

d

�2
l = 0;�1;�2; � � � : (3.64)

By combining the solutions of H2D
0 and Hplane

0 , we can obtain the three
dimensional solution of a free electron in the magnetic �eld. Consequently,
we arrive at the eigenvalue and eigenfunction of three dimensional electron
gas in the external magnetic �eld,

Enml = Enm + El

= ~!c
�
n+

jmj+m

2
+
1

2

�
+
~2

2me

�
l�

d

�2
; (3.65)

with n = 0; 1; 2; � � � ; m = 0;�1;�2; � � � ; and l = 0;�1;�2; � � � ;
	nml (r) = 	nm (�; �)	l (z)

=
1p
d
	nm (�; �) e

iklz: (3.66)
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When we consider the 2D system (d � 0), the excitation energy (energy
di¤erence) with respect to the state l reaches an in�nite value. Therefore, as
far as the low energy states are concerned, it is only necessary to consider
l = 0.

3.3 Filling Factor and Degeneracy

Energy spectrum (3.65) shows that each LL has in�nite degeneracy. It indi-
cates that all electrons in the ground state belong to only the lowest energy
level of (3.65). However, such a thing is not realistic. In the real-world, some
electrons in the ground state should also belong to higher levels. This indi-
cates that the in�nite degeneracy is cut o¤ by some kinds of parameter. We
will resultingly show that the cuto¤ parameter is related to the number of
area of one-electron states in the area of system, which gives the limitation of
electron angular momentum in each LL. Accordingly, this cuto¤ parameter
will well de�ne a �lling factor and a degeneracy of 2DEG. In this section, we
precisely discuss a �lling factor and a degeneracy of Landau levels.
To see the structure of degeneracy, it is good to see the relation of the

energy spectrum (3.65) to the ordinary Landau levels

EN = ~!c
�
N +

1

2

�
; N = 0; 1; 2; ::: (3.67)

Then the relation between of the ordinary Landau levels (3.67) and (3.58) is
given by

N = n+
jmj+m

2
: (3.68)

When we focus on the lowest Landau level (N = 0) (LLL), the relation (3.68)
leads to

0 = n+
jmj+m

2
: (3.69)

For m � 0, we have n = m = 0 because of n � 0. But, for m < 0, m can
be taken an arbitrary negative integer in addition to n = 0. That is to say,
there exists an in�nite degeneracy. The LLL N = 0 is thus constructed by
n = 0 and m = �m0 � 0 (m0 is a positive integer). Since the wave function
in the LLL is given by

 0;�m0(�; �) =

�
1

2m0m0!

� 1
2 1

lB
exp

�
� �2

4l2B

��
�

lB

�m0
e�im

0�

p
2�

; (3.70)
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we obtain the existence probability, P (�; �) = �j 0;�m0(�; �)j2, as

P (�; �) =
1

2�2m0m0!l2m
0+2

B

�2m
0+1 exp

�
� �2

2l2B

�
: (3.71)

Since di¤erentiation of P (�; �) with respect to � gives

@P (�; �)

@�
=

1

2�2m0m0!l2m
0+2

B

�2m
0
exp

�
� �2

2l2B

��
2m0 + 1� �2

l2B

�
; (3.72)

we �nd that the existence probability P (�; �) has the maximal value at
� =

p
2m0 + 1lB. That is to say, electrons exist on the circle with radiusp

2m0 + 1lB. Furthermore, we can evaluate the expectation value of �2,

h0;�m0j�2j0;�m0i =
Z 2�

0

d'

2�

Z 1

0

�3d�
1

2m0m0!l2B
exp

�
� �2

2l2B

��
�

lB

�2m0

=
1

2m0m0!l2+2m
0

B

Z 1

0

�3+2m
0
exp

�
� �2

2l2B

�
d�

= 2(m0 + 1)l2B; (3.73)

where we used a Gauss integral formula,Z 1

0

xn exp(�ax2)dx = 1

2

�
n� 1
2

�
!a�

n+1
2 : (3.74)

Hence, when we consider a circular disk geometry with the area S = �R2

with the radius R, the number of one-electron state in the LLL N = 0 is
determined by S=2�l2B. Thus, the maximum of jmj is limited by

jmj < mmax = �oor
�
1

2

�
R2

l2B
� 1
��

= �oor
�
1

2

�
S

�l2B
� 1
��

; (3.75)

where �oor[x] is a �oor function. This indicates the maximum of jmj is
proportional to the size of system and the magnitude of the magnetic �eld.
In general, the degeneracy is given by mmax +N for arbitrary N . Then, we
can de�ne a �lling factor as

� � Ne
mmax +N

; (3.76)

where Ne is total number of electrons.
In condensed matter system, because S � �l2B, mmax would be satis�ed,

reduces to

mmax � �oor
�
R2

2l2B

�
= �oor

�
S

2�l2B

�
: (3.77)
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Figure 3.3: The illustration of the Landau levels in angular momentum pic-
ture. Crosses lined up along the horizontal line N describe the degenerated
state in each Landau level N . The states under the line � = 1 are occupied
and those above the line � = 1 are unoccupied.

And when we assume the low N(� mmax), the �lling factor is described by

� � Ne
mmax

� 2�l2B
Ne
�R2

: (3.78)

For example, in the case of � = 1, the state N = 0 is occupied and its
degeneracy is R2=2l2B in Fig. 3.3.

3.4 Density of States

In condensed matter physics, a density of states of a system plays important
role to investigate the various physical properties of matter and is de�ned
by the number of states per interval of energy at each energy level that are
available to be occupied. Therefore, the density of states is closely related to
the degeneracy of system. In the previous section, we discussed the degen-
eracy of 2DEG. In this section, we derive the density of state of the electron
in magnetic �eld.
First, we consider the density of state in 3D system. The de�nition of

the density of states in 3D system is given by

D (E) =
1

V

X
k

� (E � E (k)) (3.79)
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We here neglected the spin degree of freedom. Because our considering 3D-
system is con�ned in a cylinder, the energy spectrum is discretized as Eq.
(3.65). The density of states is then written by

D3D (E) =
1

V

1X
n=0

1X
m=�mmax

1X
l=�1

�

 
E�~!c

�
n+

jmj+m
2

+
1

2

�
+
~2

2me

�
l�

d

�2!
:

(3.80)
We now transform indexes n;m into N;M as

N = n+
jmj+m

2
; (3.81)

M = n+
jmj �m

2
: (3.82)

Since the upper limit ofM is then determined by the degeneracy in the state
N , we see N +mmax. Therefore, the density of states is described by

D3D (E) =
1

V

1X
N=0

1X
l=�1

N+mmaxX
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�
+
~2

2me

�
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d

�2!
; (3.83)

where we used the �lling factor � given by (3.76) in the last step.
Next, when we consider 2D system (d� R), the density of states is then

given by

D2D (E) =
1

�

Ne
V

1X
N=0

1X
l=�1

�

�
E � ~!c

�
N +

1

2

��
: (3.84)

In particular, assuming the LLL N = 0, we obtain

D2D (E) =
mmax

S
�

�
E � ~!c

2

�
=

1

2�l2B
�

�
E � ~!c

2

�
: (3.85)

Thus the density of one-electron state is reproduced. At any rate, the density
of states of 2DEG is described by �-function. This is one of the remarkable
features of 2DEG.
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3.5 E¤ective Mass (Cyclotron Mass) of Elec-
tron

In condensed matter physics, an e¤ective mass of particle is the mass that it
seems to have when interacting with the particle�s environment. For example,
the motion of particles in a periodic potential is very di¤erent from their
motion in a vacuum. The e¤ective mass is a quantity that is introduced to
simplify band structures by regarding the behavior of a particle in periodic
potential as that of a free particle[48]. Thus, the e¤ective mass can be seen
as an important basic parameter that in�uences various properties of a solid.
In general, the value of e¤ective mass depends on the purpose for which
it is used. Therefore, there are some de�nitions of the e¤ective mass for
some purposes and some materials. One of them is a cyclotron mass. As
we consider the cyclotron motion of the electron which moves under the
magnetic �eld, we will here discuss the cyclotron e¤ective mass.
Classically, the electron in the magnetic �eld B is governed by the equa-

tion of motion,
@ke
@t

= � e
~
v �B; (3.86)

where v is a velocity of electron. ke changes on a Fermi surface perpendic-
ular to the magnetic �eld. When the Fermi surface is closed, this equation
represents the rotational motion of the electron. The integral of this equation
then gives the period T

T =
~
eB

I
dke
jv?j

; (3.87)

where v? is the electron velocity perpendicular to the magnetic �eld. Since
the velocity is given by

jv?j =
1

~

����� @E@ke
�
?

���� ; (3.88)

the period is represented by

T =
~2

eB

I
dke���� @E@ke�?���

=
~2

eB

�
@

@E

I
jkej dke

�
?
: (3.89)I

jkej dke is an area of the intersection of the energy surface in k-space,
that is,

A (E) =

I
jkej dke: (3.90)
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It can be shown that the angular (cyclotron) frequency depends on the deriv-
ative of this area in energy. The angular frequency is then given by

!c =
2�eB

~2
=

�����@A@E
�
?

���� ; (3.91)

where the area A perpendicular to the magnetic �eld is given by

A? = �k?2: (3.92)

When we introduce the cyclotron e¤ective electron massm�
e, the wavenumber

in perpendicular plane to the magnetic �eld is related to dispersion relation
as E? = ~2k?2=2m�

e. Consequently, we obtain�����@A@E
�
?

���� = 2�m�
e

~2
: (3.93)

This leads to the de�nition of the cyclotron mass:

m�
e =

~2

2�

�����@A@E
�
?

���� : (3.94)

Consequently, by using (3.91), the angular cyclotron frequency is obtained
as

!c =
eB

m�
e

; (3.95)

which is the same form with the cyclotron frequency for a free electron mass
in a vacuum me. By measuring the cyclotron frequency, we can know the cy-
clotron e¤ective mass and the information of the Fermi surface. For example,
the cyclotron electron mass of GaAs is known to be m�

e = 0:067me. As such
experiments to measure the cyclotrons frequency, the cyclotron resonance,
de Haas�van Alphen e¤ect, etc. are known.
On the other hand, in quantum mechanics, when we compare the dis-

persion of free electron, E = ~2k2e=2m�
e, to the energy spectrum (3.65), the

Landau orbit in k-space in xy-plane (perpendicular to z axis) is described by
a circle with a radius

k?nm =

s
2eB

~

�
n+

jmj+m

2
+
1

2

�
; (3.96)

and the wavenumber in z-direction is given by

kzl =
l�

d
: (3.97)
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Now we assume that we distribute the electrons on 2D plane, which cor-
responds to very thin thickness d. Then the di¤erence between arbitrary kzl
becomes large and almost the Landau orbits belongs to the lowest wavenum-
ber (energy) in z-direction, kz0 = 0 (or Ez0 = 0) due to l = 0. Therefore,
we can concentrate on the wavenumber in xy-plane. The area of orbital in
k-space is then obtained as

A(Enm) = �k?2nm

=
2�eB

~

�
n+

jmj+m

2
+
1

2

�
: (3.98)

Since this area is discretized by n and m, it is known that A(Enm) forms a
Landau tube, which causes de Haas�van Alphen e¤ect.

3.6 Coherent State of 2DEG in Cylindrical
System

In quantum mechanics, since the electron�s position and momentum are si-
multaneously undetermined because of the uncertainty principle, the elec-
tron�s trajectory becomes uncertain. Therefore, to retrieve the electron�s
classical trajectory, we consider the semi-classical state, so-called coherent
state, which is constructed by the eigenstate of the annihilation operator
and minimizes the uncertainty relation, �x�p = ~=2.
In this section, we discuss how the classical motion of the electron in a

circular disk geometry under the magnetic �eld is described by using the
coherent state. The electron under the magnetic �eld exhibits the cyclotron
motion, which produces a circular electric current. Considering how such
circular electric currents are spread all over the circular disk geometry by
superposition of the coherent states, we know the behavior of the total electric
current. We will then show that the bulk currents are canceled out and only
the edge current survives.

3.6.1 Second Quantization

Non-commutative Geometry

In this subsection, to construct the coherent states of electron under the
magnetic �eld, we rebuild the theory by the second quantization approach.
The reason is that the coherent states can be constructed by the eigenstate
of the annihilation operator. After that, we review the construction of the
wavefunction and their property.
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We �rst introduce the commutation relation:

[x; px] = [y; py] = i~;
[x; y] = [px; py] = [x; py] = [y; px] = 0; (3.99)

where ~ is a reduced Planck constant. By these commutation relations, we
obtain the relation between the guiding center r0 and Larmor radius �

0 = [x; y]

= [x0; y0] +
�
�x; �y

�
; (3.100)

that is, �
�x; �y

�
= � [x0; y0] : (3.101)

By help of the Larmor radius in phase space (3.19), the symmetric gauge
(3.12), and the formula

[A; f (B)] =
@f

@B
[A;B] ; (3.102)

which is valid for
[A; [A;B]] = [B; [A;B]] = 0; (3.103)

we obtain the commutation relation of �:�
�x; �y

�
= � e

m2!2c
f[py; Ax (y)]� [px; Ay (x)]g

= � e

m2!2c

�
@Ax (y)

@y
[py; y]�

@Ay (x)

@x
[px; x]

�
= � i~

eB
= �ilB; (3.104)

where we used the magnetic length lB =
p
~=eB. From the commutator

(3.101), we also obtain the commutation relation of r0,

[x0; y0] = ilB: (3.105)

We note that these results are gauge invariant.

Degeneracy and Filling Factor

From (3.104) and (3.105), we notice that the each component of variables �
and r0 do not commute. Since we can easily check that the commutator of
between the Hamiltonian (3.18) and r0 commutes:

[x0; H] = [y0; H] = 0; (3.106)
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we �nd that the guiding center r0 is degenerate and is a constant of motion.
Therefore, at any level, each one-electron state occupies a minimal area by
the uncertainty principle:

�S = �x0�y0 = 2�l
2
B: (3.107)

The energetic degeneracy may thus be written in terms of this minimal area
�S. That is to say, the number of states per a given energy level and per an
unit area being

nB =
1

�S
=

eB

2�~
=

B

�0
; (3.108)

which is the �ux density per the �ux quantum, �0 = h=e. This result is
another interpretation of degeneracy (3.75) and the �lling factor (3.76).

Ladder Operators and Hamiltonian

As the commutation relations (3.104) and (3.105) have suggested, we can
construct the ladder operators

�
a; ay

�
for � and

�
b; by

�
for r0. First, we

introduce the ladder operators
�
a; ay

�
,

a =
1p
2lB

�
�x � i�y

�
;

ay =
1p
2lB

�
�x + i�y

�
: (3.109)

Then, we can express the Larmor radius vector by (3.109) as

�x =
lBp
2

�
ay + a

�
;

�y =
lBp
2i

�
ay � a

�
: (3.110)

Similarly, we can introduce the ladder operators
�
b; by

�
,

b =
1p
2lB

(x0 + iy0) ;

by =
1p
2lB

(x0 � iy0) ; (3.111)

and express the guiding center vector r0 by (3.111)

x0 =
lBp
2

�
by + b

�
;

y0 = �
lBp
2i

�
by � b

�
: (3.112)
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We here note that
�
a; ay

�
=
�
b; by

�
= 1, and

�
a; b(y)

�
= 0. In terms of the

ladder operators (3.110), the Hamiltonian is rewritten by

H =
1

2
m!2c

�
�2x + �2y

�
= ~!c

�
aya+

1

2

�
: (3.113)

The energy spectrum is thus given by En = ~!c
�
N + 1

2

�
, where N is the

eigenvalue of operator aya.
In fact the system may formally be viewed as a system of two harmonic

oscillators,

H = ~!c
�
aya+

1

2

�
+ ~!0

�
byb+

1

2

�
= ~!c

�
N +

1

2

�
+ ~!0

�
M +

1

2

�
; (3.114)

where we introduced the second quantum numberM which is the eigenvalue
byb. However, we note that the frequency of the second oscillator must van-
ishes, !0 = 0, because the guiding center r0 is degenerate (a constant of
motion).
The creation operator ay(by) works to increase the quantum numberN(M)

by one. On the other hand, the annihilation operator a(b) works to decrease
the quantum numberN(M) by one. Thus, the eigenstates are assigned by the
two quantum numbers, N and M . By the requirements of the normalization
condition hN;M jN;Mi = 1, the eigenstates associated with the two species
of ladder operators are determined by

ayjN;Mi =
p
N + 1jN + 1;Mi; ajN;Mi =

p
N jN � 1;Mi for N > 0;

byjN;Mi =
p
M + 1jN;M + 1i; bjN;Mi =

p
M jN;M � 1i for M > 0:

(3.115)

In particular, when the annihilation operator a(b) works on the state N =
0(M = 0), it breaks the state vector,

aj0;Mi = 0 (bjN; 0i = 0) : (3.116)

Then, the negative numbers N;M < 0 are prohibited.
By applying the creation operators to the ground state j0; 0i, we can

construct an arbitrary state jN;Mi,

jN;Mi =
�
ay
�N

p
N !

�
by
�M

p
M !

j0; 0i: (3.117)
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We note that the wave functions in real space depend on the gauge choice of
the vector potential.

Wave Functions in Symmetric Gauge

Although we have already derived the 2DEG wave function in symmetric
gauge, we brie�y review the construction of the real space representation of
eigenstates, �N;M(x; y) = hx; yjN;Mi, via the ladder operators (3.109) and
(3.111)[49]. When we choose the symmetric gauge, Aext=(B=2) (�y; x; 0),
With the help of (3.15), and (3.110), the ladder operators (3.109) can be
represented as

a =
p
2

�
1

4lB
(x� iy) +

lB
2
(@x � i@y)

�
=
p
2

�
z

4lB
+ lB@z�

�
; (3.118)

and

ay =
p
2

�
1

4lB
(x+ iy)� lB

2
(@x + i@y)

�
=
p
2

�
z�

4lB
� lB@z

�
: (3.119)

Similarly, the ladder operators (3.111) can also be represented as

b =
p
2

�
lB
2
(@x + i@y) +

1

4lB
(x+ iy)

�
=
p
2

�
z�

4lB
+ lB@z

�
; (3.120)

and

by =
p
2

�
1

4lB
(x� iy)� lB

2
(@x � i@y)

�
=
p
2

�
z

4lB
� lB@z�

�
; (3.121)

where we introduced the electron position in the complex plane as z = x� iy
and the di¤erential operator with respect to z as @z = (@x + i@y) =2, and
z� = x+ iy and @z� = (@x � i@y) =2 are their complex conjugate.
We here note on the choice of sign of the imaginary part. At a glance,

this choice seems to be unnatural. However, it is convenient for negatively
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charged particle, for example, electrons. Because the negatively charged par-
ticle under the magnetic �eld along z axis rotates "clockwise" about z axis.
In contrast, the positively charged particle then rotates "counterclockwise"
about z axis. It is thus natural to describe the position of positively charged
particle as z� = x + iy. In other words, the di¤erence of the sign of particle
charge re�ects the handedness of the rotation and corresponds to the sign of
the imaginary part.
Since applying the annihilation operator a to the LLL state (N = 0)

breaks the state vector as the expression of (3.116), the wave function in the
LLL is thus determined by the di¤erential equation,�

z + 4l2B@z�
�
�N=0 (z; z

�) = 0: (3.122)

Although the solution of this equation is a Gauss function, there is an arbi-
trary factor being an analytic function f(z) with @z�f(z) = 0,

�N=0 (z; z
�) = f(z)e�jzj

2=4l2B : (3.123)

On the other hand, we can �nd the di¤erential equation for the state with
M = 0, �

z� + 4l2B@z
�
�M=0 (z; z

�) = 0: (3.124)

This equation has the solution such as

�M=0 (z; z
�) = g(z�)e�jzj

2=4l2B ; (3.125)

where g(z�) is the anti-analytic function with @zg(z�) = 0. Therefore, the
state with N = 0 andM = 0 must thus have a factor satisfying both analytic
and anti-analytic condition. Such a factor is only a constant. Thus the wave
function with N = 0 and M = 0 is written by �N=0;M=0 (z; z

�) = Ce�jzj
2=4l2B ;

where C is a normalization constant. Since the normalization constant is
given by C = 1=lB

p
2�, we obtain the normalized solution,

�N=0;M=0 (z; z
�) =

1

lB
p
2�
e�jzj

2=4l2B : (3.126)

By multiplying M pieces of the creation operator by to (3.126), we can
construct a wave function corresponding to the quantum number M in the
LLL. By using (3.121) and @z�e

�jzj2=4l2B = �ze�jzj2=4l2B=4l2B, we obtain the
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wave function with N = 0 and M ,

�N=0;M (z; z
�) =

�
by
�M

p
M !

�N=0;M=0 (z; z
�)

=

r
2M

M !

�
z

4lB
� lB@z�

�M
1p
2�lB

e�jzj
2=4l2B

=
1

lB
p
2�M !

�
zp
2lB

�M
e�jzj

2=4l2B : (3.127)

Similarly, by multiplying N pieces of the creation operator by to (3.126), we
can construct a wave function corresponding to the quantum number N in
the state M = 0 as

�N;M=0 (z; z
�) =

�
ay
�N

p
N !

�N=0;M=0 (z; z
�)

=

r
2N

N !

�
z�

4lB
� lB@z

�N
1p
2�lB

e�jzj
2=4l2B

=
1

lB
p
2�N !

�
z�p
2lB

�N
e�jzj

2=4l2B ; (3.128)

where we used (3.119) and @ze
�jzj2=4l2B = �z�e�jzj2=4l2B=4l2B. An arbitrary

state is thus written by

�N;M (z; z
�) =

1

lB

r
2M

2�N !M !

�
z

4lB
� lB@z�

�M �
z�p
2lB

�N
e�jzj

2=4l2B

=
1

lB

r
2M

2�N !M !
ei(N�M) arg z�e�jzj

2=4l2B

 
jzj2

l2B

!jM�N j=2

�LjM�N j
(N+M�jM�N j)=2

 
jzj2

2l2B

!
; (3.129)

where Lmn (x) is the associated Laguerre polynomials. Since jzj = � and
arg z� = �, we can again obtain the wave function in cylindrical coordinates
(3.59) except for indexes.

Angular Momentum Operator

The z-component of the angular momentum operator is de�ned by

L̂z = xp̂y � p̂xy: (3.130)
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We describe this eigenvalue via the ladder operators. We �rst note that the
mechanical momentum relates to the Larmor radius �,

m _x = px + eAx = �m!c�y;
m _y = py + eAy = m!c�x: (3.131)

We then rewrite the angular momentum operator as

L̂z = x (m!c�x � eAy)�
�
�m!c�y � eAx

�
y: (3.132)

By using the symmetric gauge (3.12) and the guiding center r0 = r��, we
can write the angular momentum operator as

L̂z =
1

2
m!c

��
�2x + �2y

�
�
�
x20 + y20

��
:

Now, we further use the ladder operators (3.110) and (3.112). Since they
give

�2x + �2y = 2l
2
B

�
aya+

1

2

�
; (3.133)

x20 + y20 = 2l
2
B

�
byb+

1

2

�
; (3.134)

we obtain the angular momentum operator by the ladder operators,

L̂z = ~
�
aya� byb

�
: (3.135)

Because aya and byb are number operators corresponding to N and M , the
eigenvalue of the angular momentum can be described by N and M ,

Lz = (N �M) ~: (3.136)

In contrast, the analytically derived wavefunction (3.59) leads to the angular
momentum by its operator Lz = i @

@�
,

Lz = m~: (3.137)

On the other hand, we see the correspondence of energy eigenvalue. LL
derived by the ladder operators is

E = ~!c
�
N +

1

2

�
; (3.138)
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and that analytically derived is

E = ~!c
�
n+

jmj+m

2
+
1

2

�
: (3.139)

We thus �nd that the relation of indexes (n;m) and (N;M) is given by

N = n+
jmj+m

2
; (3.140)

M = n+
jmj �m

2
: (3.141)

Guiding Center and Larmor Radius

To see the orbital structure of the electron under the magnetic �eld, it is
worth to see the average value of the guiding center and Larmor radius and
the absolute value of them. We �rst compute the average value of the guiding
center operator as

hN;M jr0jN;Mi = hN;M jx0jN;Miêx + hN;M jy0jN;Miêy

=
lBp
2
hN;M j

�
by + b

�
jN;Miêx

� lBp
2i
hN;M j

�
by � b

�
jN;Miêy

= 0; (3.142)

but the absolute value of it is given by

hjr0jiN;M �
q
hN;M jx20 + y20jN;Mi

= lB
p
hN;M j2byb+ 1jN;Mi

= lB
p
2M + 1: (3.143)

This means that the particle�s guiding center is located on the circle of radius
lB
p
2M + 1, but the phase is undetermined.
On the other hand, the average value of Larmor radius operator gives

hN;M j�jN;Mi = 0; (3.144)

but its absolute value is given by

hj�jiN;M �
p
hN;M j�2jN;Mi = lB

p
2N + 1: (3.145)
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Therefore, we �nd that the arbitrary state jN;Mi distributes at the center
of the Larmor motion with radius hj�jiN;M located at the position of guiding
center hjr0jiN;M . The geometric meaning of this is illustrated in Fig. 3.4[50].
In particular, when we focus on the LLL, that is, n = 0 and m � 0, we see
N = 0 and M = jmj. The guiding center in the LLL is then hjr0ji0;jmj =
lB
p
2 jmj+ 1, and the Larmor radius is hj�ji0;jmj = lB.

Figure 3.4: Schematics of the classical orbits of Landau levels. The quantum
number M assigns the radius of the guiding center jr0j, whereas N is the
radius of Larmor orbit j�j.

3.6.2 Coherent States and Semi-Classical Motion

To reproduce the classical trajectory (3.5) as shown in previous section, we
must construct semi-classical states, so-called coherent states. The coherent
states are the speci�c quantum states of the quantum harmonic oscillator.
And it is known that the coherent states often describes the oscillatory be-
havior of a classical harmonic oscillator, which is the motion of a particle con-
�ned in a quadratic potential well. The coherent states are concerned with a
displacement of the ground-state wavepacket from the origin of the system.
This displacement is equivalent to an amplitude of a particle oscillating. The
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coherent states are expressed as eigenvectors of the annihilation operator and
forming an overcompleteness and minimum uncertainty states[51].
In general, a displacement operator can be constructed from a pair of

non-commutative operator. In case of Landau-quantized 2DEG, as we have
seen, two pairs of non-commutative conjugate operators are introduced,

[x̂0; ŷ0] = il2B; (3.146)�
�̂x; �̂y

�
= �il2B; (3.147)

where the symbol with hats intends operator in this section. We can intro-
duce two types of the displacement operator which act in real space,

D (x0; y0) = e�i(x0ŷ0�y0x̂0)=l
2
B ; (3.148)

~D (�x0 ; �
y
0) = ei(�

x
0 �̂y��

y
0 �̂x)=l2B : (3.149)

The �rst operator (3.148) displaces the position of the guiding center to
r0 = (x0; y0) as

Dy (x0; y0) x̂0D (x0; y0) = e
i(x0ŷ0�y0x̂0)=l2B x̂0e

�i(x0ŷ0�y0x̂0)=l2B

= eix0ŷ0=l
2
B x̂0e

�ix0ŷ0=l2B

= eix0ŷ0=l
2
B

(
e�ix0ŷ0=l

2
B x̂0 +

@e�ix0ŷ0=l
2
B

@ŷ0
[x̂0; ŷ0]

)
= x̂0 + x0; (3.150)

and
Dy (x0; y0) ŷ0D (x0; y0) = ŷ0 + y0; (3.151)

where we used the formula

[A; f (B)] =
@f

@B
[A;B] : (3.152)

Similarly, the second operator (3.149) displaces the Larmor radius vector to
position �0 = (�

x
0 ; �

y
0) as

~Dy (�x0 ; �
y
0) �̂x ~D (�

x
0 ; �

y
0) = �̂x + �x0 ;

~Dy (�x0 ; �
y
0) �̂y ~D (�

x
0 ; �

y
0) = �̂y + �y0: (3.153)

Since the guiding center is a constant of motion, the displacement op-
erator D (x0; y0) commutes with the Hamiltonian and does not change the
quantum number N . Thus the coherent state in the LLL is represented by

jx0; y0;N = 0i = D (x0; y0) j0; 0i; (3.154)
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where j0; 0i = jN = 0;M = 0i. The state jx0; y0;N = 0i remains an
eigenstate of the Hamiltonian. The dynamics enters with this displacement
operator (3.149).
Therefore, the general semi-classical state can be written by these two

displacement operators (3.148) and (3.149),

jx0; y0; �x0 ; �
y
0i = ~D (�x0 ; �

y
0)D (x0; y0) j0; 0i: (3.155)

The physical meaning of this operation is that the guiding center is centered
at r0 = (x0; y0), and the electron turns around on a circle with radius j�0j.
We can describe thus the motion illustrated on Fig. 3.2 by a displacement
of a Gaussian wave packet.
We check the average values of the guiding center operator for the coher-

ent states:

hx0; y0; �x0 ; �
y
0 jx̂0jx0; y0; �x0 ; �

y
0i

=
D
0; 0

���Dy (x0; y0) ~D
y (�x0 ; �

y
0) x̂0 ~D (�

x
0 ; �

y
0)D (x0; y0)

��� 0; 0E
=


0; 0

��Dy (x0; y0) x̂0D (x0; y0)
�� 0; 0�

= h0; 0 j(x̂0 + x0)j 0; 0i
= x0; (3.156)

hx0; y0; �x0 ; �
y
0 jŷ0jx0; y0; �x0 ; �

y
0i = y0: (3.157)

This means that the guiding center is positioned at r0 = (x0; y0) ;

hx0; y0; �x0 ; �
y
0 ĵr0jx0; y0; �x0 ; �

y
0i = r0: (3.158)

On the other hand, the average value of the Larmor radius for the coherent
states is similarly given by

hx0; y0; �x0 ; �
y
0 j�̂jx0; y0; �x0 ; �

y
0i = �0: (3.159)

A coherent state is an eigenstate of the ladder operators a and b in our
case. To �nd the eigenvalues, we �rst show that the displacement operators
D (x0; y0) and ~D (�x0 ; �

y
0) are represented by these ladder operators

�
a; ay

�
and

�
b; by

�
,

D (x0; y0) = exp

�
1p
2lB

�
(x0 + iy0) b

y � (x0 � iy0) b
	�

= exp
�
�by � ��b

�
= e�b

y
e��

�be[�b
y;��b]=2

= e�j�j
2=2e�b

y
e��

�b; (3.160)
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and

~D (�x0 ; �
y
0) = exp

�
1p
2lB

�
(�x0 � i�y0) a

y � (�x0 + i�y0) a
	�

= exp
�
�ay � ��a

�
= e�j�j

2=2e�a
y
e��

�a; (3.161)

where we de�ned

� =
1p
2lB

(�x0 � i�y0) ; (3.162)

� =
1p
2lB

(x0 + iy0) : (3.163)

(We here comment the usage of a character �. We require attention to the
di¤erence from the de�nition of � in Chapter 2 with (3.162). Only in this
Chapter, we will use (3.162) as the de�nition of �.) and used the Baker-
Hausdor¤ formula

eA+B = eAeBe�[A;B]=2; (3.164)

which valid when [A; [A;B]] = [B; [A;B]] = 0. Therefore, we can rewrite the
coherent state as

jx0; y0; �x0 ; �
y
0i= ~D (�x0 ; �

y
0)D (x0; y0) j0; 0i

=e�(j�j
2+j�j2)=2e�a

y
e�b

yj0; 0i: (3.165)

By applying the annihilation operator to this expression, we can �nd the
eigenvalue of it. First, when we apply the operator a, we �nd

ajx0; y0; �x0 ; �
y
0i = e�(j�j

2+j�j2)=2
h
a; e�a

y
i
e�b

yj0; 0i

= e�(j�j
2+j�j2)=2@e

�ay

@ay
�
a; ay

�
e�b

yj0; 0i

= �e�(j�j
2+j�j2)=2e�a

y
e�b

yj0; 0i
= �jx0; y0; �x0 ; �

y
0i; (3.166)

and for the operator b, we similarly �nd

bjx0; y0; �x0 ; �
y
0i = e�(j�j

2+j�j2)=2e�a
y
h
b; e�b

y
i
j0; 0i

= �jx0; y0; �x0 ; �
y
0i: (3.167)

Here in these derivations, we used the formula

[A; f (B)] =
@f

@B
[A;B] : (3.168)
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Probability Distribution

We here comment the property of the coherent state, the probability distri-
bution. To see this, we �nd that the coherent states jx0; y0; �x0 ; �

y
0i can be

expanded by the arbitrary state jN;Mi as

jx0; y0; �x0 ; �
y
0i = e�(j�j

2+j�j2)=2
1X
N=0

1X
M=0

�Np
N !

�Mp
M !
jN;Mi

�
1X
N=0

1X
M=0

C�;� (N;M) jN;Mi; (3.169)

We can check it as below: First, the arbitrary state jN;Mi can be expressed
by the creation operators,

jN;Mi =
�
ay
�N

p
N !

�
by
�M

p
M !

j0; 0i: (3.170)

Next, we multiply e�(j�j
2+j�j2)=2�N�M=

p
N !M ! by both side and sum with

respect to N and M ,

e�(j�j
2+j�j2)=2

1X
N=0

1X
M=0

�Np
N !

�Mp
M !
jN;Mi

= e�(j�j
2+j�j2)=2

1X
N=0

1X
M=0

�
�ay
�N

N !

�
�by
�M

M !
j0; 0i

= e�(j�j
2+j�j2)=2 e�a

y
e�b

yj0; 0i: (3.171)

The last expression is nothing but the coherent state (3.165), that is,

jx0; y0; �x0 ; �
y
0i = e�(j�j

2+j�j2)=2
1X
N=0

1X
M=0

�Np
N !

�Mp
M !
jN;Mi: (3.172)

The projection of the coherent states jx0; y0; �x0 ; �
y
0i to the arbitrary Lan-

dau state jN;Mi is written by

hN;M jx0; y0; �x0 ; �
y
0i = e�(j�j

2+j�j2)=2 �
N

p
N !

�Mp
M !

= C�;� (N;M) : (3.173)

This projection can lead to the probability distribution in the state jN;Mi
at the position r = r0 + �0. That is to say, by squaring C�;� (N;M), we



CHAPTER 3. TWO DIMENSIONAL ELECTRON GAS 58

obtain

W�;� (N;M) = jC�;� (N;M)j2

= e�j�j
2�j�j2 j�j

2N

N !

j�j2M

M !
: (3.174)

Taking into account that j�j2 =


x0; y0; �

x
0 ; �

y
0

��aya�� x0; y0; �x0 ; �y0� = �N and
j�j2 =



x0; y0; �

x
0 ; �

y
0

��byb�� x0; y0; �x0 ; �y0� = �M which stands for the average
of the quantities N , M in the jN;Mi-state, we thus see this probability
distribution is nothing but the Poisson probability distribution

W�;� (N;M) = e
� �N� �M

�NN

N !

�MM

M !
: (3.175)

On the other hand, when we take into account that j�j2 = j�0j
2 =2l2B and

j�j2 = jr0j2 =2l2B, the probability distribution can be represented by the guid-
ing center and the Larmor radius as

W�;� (N;M) = e
�(j�0j2+jr0j2)=2l2B 1

N !

 
j�0j

2

2l2B

!N
1

M !

 
jr0j2

2l2B

!M
: (3.176)

Time Evolution of Coherent State

To obtain the time evolution of the coherent state j�; �i = jx0; y0; �x0 ; �
y
0i,

we use the time evolution operator e�
i
~Ht. We can proceed to calculate as

below: We �rst extract the displacement operator (3.149) from the coherent
state at t = 0;

j�; �i (t) = e� i
~Htj�; �i (t = 0)

= e�
i
~Ht ~D (�x0 ; �

y
0) j0; �i (t = 0)

= e�j�j
2=2e�

i
~Ht

( 1X
N=0

�
�ay
�N

N !

)
j0; �i (t = 0) : (3.177)

To change the Hamilton operator to c-number, we use (3.170) for the operator
ay,

j�; �i (t) = e�j�j
2=2e�

i
~Ht

( 1X
N=0

�Np
N !
jN; �i (t = 0)

)

= e�j�j
2=2

( 1X
N=0

�Np
N !
e�i!c(N+

1
2)tjN; �i (t = 0)

)

= e�i!ct=2

( 1X
N=0

e�j�j
2=2 (�e

�i!ct)
N

p
N !

jN; �i (t = 0)
)
: (3.178)
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Assuming �e�i!ct as an eigenvalue of a at t, we obtain the time-evolved
coherent state by using (3.172),

j�; �i (t) = e�i!ct=2j� (t = 0) e�i!ct; � (t = 0)i: (3.179)

This yields the time evolution of the eigenvalue,

� (t) = � (t = 0) e�i!ct;

� (t) = � (t = 0) : (3.180)

Since x0 =
p
2lB Re[�] and y0 =

p
2lB Im[�], we see that the guiding center

r0 is a constant of motion. On the other hand, since �x0 (t) =
p
2lB Re[� (t)]

and �y0 (t) = �
p
2lB Im[� (t)], we can reproduce the classical trajectory (3.5),

�x0 (t) = �x0 (t = 0) cos!ct� �y0 (t = 0) sin!ct

= j�0 (t = 0)j
�
�x0 (t = 0)

j�0 (t = 0)j
cos!ct�

�y0 (t = 0)

j�0 (t = 0)j
sin!ct

�
= � cos (!ct+ 
) ; (3.181)

and

�y0 (t) = �x0 (t = 0) sin!ct+ �y0 (t = 0) cos!ct

= j�0 (t = 0)j
�
�x0 (t = 0)

j�0 (t = 0)j
sin!ct+

�y0 (t = 0)

j�0 (t = 0)j
cos!ct

�
= � sin (!ct+ 
) ; (3.182)

where we denoted � = j�0 (t = 0)j, and 
 = arctan
�
�y0(t=0)

�x0 (t=0)

�
[52].

3.6.3 Physical Meaning of Cancellation of Bulk Cur-
rents

In this section, we discuss that only the current on the edge of system carries
all of the total amount of current in system. To see this, we pay our attention
to one coherent state at the guiding center r0, which produces the circular
current by the Larmor motion with radius j�j from (3.181) and (3.182). Be-
cause of the uncertainty (3.107), it seems that the circular current �ows the
edge of the area �S. When the LLs state can be constructed by the super-
position of the coherent states, the superposition produces contact points of
the circular current at the center r0 with the surrounding circular currents.
Thus, the circular current at the center r0 is canceled out by the surround-
ing circular current. Such the cancellation occurs on whole system except to
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the edge. Thus, when we decompose the total amount of circular current to
the bulk current and edge current as jbulk + jedge, the bulk currents are all
cancelled out, i.e.,

jbulk = 0; (3.183)

and all of the total amount of circular current is carried by only the edge
current. This result is considered to discuss the magnetization induced by
the current in Sec. 4.3.



Chapter 4

Landau Level Spectroscopy by
OV

As discussed above, we know that an optical OAM can be transferred only
to the center-of-mass motion of the electron in a electric dipole transition,
and that, to absorb a photon, the electron must be bounded. Also, we see
that the Landau-quantized electron in an axial symmetric system can carries
an orbital angular momentum. Therefore, it is naturally expected that the
degenerated 2DEG in magnetic �eld can absorb the optical OAM in the
electric dipole transition and that the selection rules by optical OAM can be
modi�ed.
In this Chapter, we thus investigate the optical conductivity and the

selection rules in 2DEG under the magnetic �eld by irradiating with lights
carrying OAM in addition to spin angular momentum (SAM).We will demon-
strate that the bulk current induced by OV disappears, and only the edge
current survives when the 2DEG is irradiated with a Bessel beam. After
that, the result of the magnetic �eld dependence of the induced current will
be given. It will also be demonstrated an orbital magnetization due to the
existence of the edge currents.

4.1 Landau-quantized Electron

The quantized energy levels (Landau levels, LLs) of 2DEG in the magnetic
�eld B are given by [47] EN = ~!c (N + 1=2), which usually appear by solv-
ing the Schrödinger equation in the Landau�s gauge, where N = 0; 1; 2; : : : is
the Landau level index, and !c = eB=me is the cyclotron frequency with the
elementary charge e (> 0), and the rest electron mass me. However, when we
consider 2DEG interacting with the Bessel OV light beam, the symmetric

61
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gauge in the cylindrical coordinates becomes a natural choice. Hence, we
consider 2DEG on a circularly shaped disk geometry and take the cylindrical
coordinates as shown in Fig. 4.1.

Figure 4.1: Schematic picture showing 2D electron distributions in the lowest
LLs on the circular disc geometry. The OV beam is vertically irradiated to
2DEG. The direction of propagation of OV is taken the z-axis. The azimuthal
angle � is on the 2D electron system.

The non-perturbative Hamiltonian for 2DEG under the magnetic �eld is
given by

H0 =
1

2me

�
�i~r+ eAext(r)

�2
(4.1)

where we use the symmetric gauge, Aext(r) = (�By=2; Bx=2; 0) ; which de-
scribes the magnetic �eld along the z-axis direction. The energy spectrum is
obtained by solving the Schrödinger equation H0	 = E	 which gives[53]

En;m = ~!c
�
n+

jmj+m

2
+
1

2

�
;

n = 0; 1; 2; :::; and m = 0;�1;�2; :::; (4.2)

where m is the magnetic quantum number related to the orbital angular
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momentum of the electron. The eigenfunction is also obtained as

	nm (�; �; z) = Nnme
� �2

4l2
B

�
�

lB

�jmj
Ljmjn

�
�2

2l2B

�
eim�p
2�

= Rnm (�)
eim�p
2�
; (4.3)

where lB =
p
~=eB is the magnetic length,Nnm = (n!=(n+ jmj)!)1=2 2�jmj=2l�1B

is the normalization constant, and Ljmjn (x) is the associated Laguerre poly-
nomials. As shown in previous section, each LL with given N is multiple
degenerated with respect to n and m due to the �nite system size with the
degeneracy factor given by S=2�l2B, where S is the area of 2DEG.
For the lowest Landau level (LLL), N = 0, we �nd that the one-electron

state covers the area 2�l2B. Then, the degeneracy or the maximum m for the
disk geometry is given by

mmax '
S

2�l2B
=
R2

2l2B
; (4.4)

which allows us to de�ne the �lling factor as

� � Ne
mmax

' 2�l2B
Ne
�R2

; (4.5)

where Ne is the total number of electrons on the disk[54]. Throughout this
dissertation, we concentrate on the system with the �lling factor � = 1, where
the Fermi energy lies in the gap between the LLL and the second Landau
level (2LL). We display the energy diagram of the axial symmetric 2DEG
system as shown in Fig. 4.2.

4.2 Photocurrent Induced by Optical Vortex

We here investigate the interaction of a Landau-quantized 2DEG with the
Bessel OV by applying the linear response theory based on Refs. [39, 55].
We start with the following total Hamiltonian, which contains the non-
perturbative Hamiltonian (4.1) interacting with the vector potential of the
OV:

H=H0 +�H =
1

2me

�
�i~r+ eAext(r)

�2 �AOV
`;� � j; (4.6)

where AOV
`;� is given by Eq. (2.37), and the electric current is determined by

j = e
me
(p+ eAext). We here neglect the electron spin and assume the optical

vortices are illuminated at the center of circular disk geometry.
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Figure 4.2: Allowed transitions from the lowest LL (N = 0) to the second LL
(N = 1) are indicated by the gray thick allows. The opened circles denote
unoccupied states, whereas closed ones are occupied.
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As we derived in Appendix A, the Kubo formula for i-component of the
induced current [56, 57] is written by

�ji (!) = �
X
n;m

X
n0;m0

(f(En;m)� f(En0;m0))

�
hn;mjjijn0;m0ihn0;m0jAOV

`;� � jjn;mi
En;m � En0;m0 + ~! + i�

: (4.7)

where f(En;m) is the Fermi distribution f(�) = [exp � (�� �) + 1]�1 with a
chemical potential � and an inverse temperature �, and jn;mi is the elec-
tron wavefunction in Eq.(4.3) and we abbreviated hats "Ô" indicating being
operators. From now on, we assume zero-temperature limit and keeping the
chemical potential lie between the LLL (N = 0) and the second LL (N = 1).
To investigate the OV-induced photocurrent, we adopt the chiral basis,

j� = (jx � ijy) =
p
2. We will show the vector components in chiral basis in

Appendix B. First, we consider the matrix element of photocurrent j�. By
using the commutation relation (3.23) or j� = i

�
e=
p
2~
�
[H0; x � iy], this

can be written as

hn;m jj�jn0;m0i = i
ep
2~
hn;mj[H0; x� iy]jn0;m0i

= i
ep
2~
(En;m � En0;m0)hn;mj�e�i�jn0;m0i

= i
ep
2~
(En;m � En0;m0)

Z 2�

0

d�

2�
ei(m

0�m�1)�

�
Z 1

0

d��2Rnm(�)Rn0m0(�)

Z d

0

dz
ei(k

0�k)z

d
; (4.8)

where d(� R) is the thickness of 2DEG. Then when we assume (k0 � k) d�
1, since the integral with respect to z reduces toZ d

0

dz
ei(k

0�k)z

d
=

1

i (k0 � k) d

n
ei(k

0�k)d � 1
o

' 1; (4.9)

we can obtain the matrix element as

hn;m jj�jn0;m0i � i
ep
2~
(En;m � En0;m0)�m0;m�1

Z 1

0

d��2Rnm(�)Rn0m0(�)

= i
ep
2~
(En;m � En0;m0)Cn

0;m0

n;m �m0;m�1; (4.10)
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where we denoted the radial integral as

Cn
0;m0

n;m =

Z
d��2Rn0;m0(�)Rn;m(�): (4.11)

Here, we obtain the selection rule m0 = m � 1 from the azimuthal integralR 2�
0

d�
2�
ei(m

0�m�1)�. After calculating the radial integral Cn
0;m0

n;m as we derive in
Appendix C and the energy factor En;m�En0;m0 as we derive in Appendix D
by using Eq.(4.2), we can obtain the matrix elements of the photocurrent as

hn;mjj+jn0;m+ 1i =

8>>>>>>>>>>><>>>>>>>>>>>:

0 for n0 = n,m < 0;

�ielB!c
p
2n+ jmj+m+ 2

for n0 = n, m � 0;
0 for n0 = n� 1,m � 0;
ielB!c

p
2n+ jmj+m+ 2

for n0 = n+ 1,m < 0;

0 for otherwise,

; (4.12)

hn;mjj�jn0;m� 1i =

8>>>>>>>>>>><>>>>>>>>>>>:

0 for n0 = n,m � 0;
ielB!c

p
2n+ jmj+m

for n0 = n,m > 0;

�ielB!c
p
2n+ jmj+m

for n0 = n� 1,m � 0;
0 for n0 = n+ 1,m > 0;

0 for otherwise,

: (4.13)

For the �lling factor � = 1 (n = 0;m � 0), these matrix elements reduce
to

h0;mjj+jn0;m+ 1i =

8><>:
�ielB!c

p
2 for n0 = 0,m = 0

ielB!c
p
2 for n0 = 1,m < 0

0 for otherwise

;

h0;mjj�jn0;m� 1i = 0 for all n0;m: (4.14)

Therefore, we �nd that the transition is allowed only N ! N + 1[57].
We summarize possible transitions from the LLL (N = 0) to the second LL
(N = 1), 8<:

(n;m;N) (n0;m0; N 0)
(0; 0; 0) ! (0; 1; 1) for m = 0
(0;m; 0) ! (1;m+ 1; 1) for m < 0

: (4.15)
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Next, we consider the matrix element of the minimal coupling of 2DEG
with OV. As shown in Appendix E, the dipole approximation is justi�ed
in our model. Then the matrix element for the photon absorption in this
approximation is obtained as

hn0;m0jAOV
`;� � jjn;mi

� i
e

~
(En0;m0 � En;m)hn0;m0jAOV

`;� � rjn;mi (4.16)

= i
e

~
A0

r
k?
2�
(�i)�(En0;m0 � En;m)

� hn0;m0jJ`(k?�)ei`�
�
�� �p

2

�
(cos�+ i� sin�)eikzzjn;mi: (4.17)

Noting that (�i)� = ��i is valid for � = �1, we can proceed to calculate as

hn0;m0jAOV
`;� � jjn;mi

= � e
~
A0

r
k?
4�
(En0;m0 � En;m)hn0;m0j�J`(k?�)ei(`+�)�eikzzjn;mi

= � e
~
A0

r
k?
4�
(En0;m0 � En;m)

Z 1

0

d��2Rn0;m0(�)Rn;m(�)J`(k?�)

�
Z 2�

0

d�

2�
ei(m�m

0+`+�)�

Z d

0

dz
ei(kz+k�k

0)z

d
: (4.18)

Then when we assume (kz + k � k0) d� 1, since the integral with respect to
z reduces toZ d

0

dz
ei(kz+k�k

0)z

d
=

1

i (kz + k � k0) d

n
ei(kz+k�k

0)d � 1
o

' 1; (4.19)

we can obtain the matrix element as

hn0;m0jAOV
`;� � jjn;mi = �

e

~
A0

r
k?
4�
(En0;m0 � En;m)

�
Z 1

0

d��2Rn0;m0(�)Rn;m(�)J`(k?�)�m0;m+`+�

= A0
e

~

r
k?
4�
(En;m � En0;m0)Dn0;m0

n;m;`�m0;m+`+�; (4.20)

where we denoted the radial integral as

Dn0;m0

n;m;` =

Z
d��2Rn0;m0(�)Rn;m(�)J`(k?�): (4.21)
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We also obtain the selection rule m0 = m+ `+� from the azimuthal integralR 2�
0

d�
2�
ei(m�m

0+`+�)�, where � = �1. This means that the OV can transfer its
TAM to the electron via the dipole transition.
We note that, when we �x the �lling factor � = 1 (the chemical potential

lies between N = 0 and N = 1), the left-handed current is not induced.
Therefore, only the right-handed current arises by transferring the optical
TAM, J = 1. Because the OV carries the SAM � = �1, the OAM and SAM
must be

` = 0; � = 1; or ` = 2; � = �1; (4.22)

respectively, with the other transitions being prohibited.
On the other hand, we can apply the external magnetic �eld anti-parallel

to the light traveling. Since the magnetic �eld then breaks time-reversal
symmetry, the direction of currents can be determined. When the magnetic
�eld reverses into the anti-parallel direction to light�s propagation, the optical
angular momentum absorption must thus change into J = �1. As a result,
the possible absorptions are reduced to ` = 0, � = �1, and ` = �2, � = 1.
Let us now return to the case of the magnetic �eld parallel to the light

traveling. Next, we calculate the photocurrent using the Kubo formula. For
the transition from N = 0 to N = 1 with � = 1, and at zero temperature,
the OV-induced current (4.7) reduces to

�j+` (!;B) = �i
F ` (B)

~! � ~!c + i�
; (4.23)

where ` = 0 or 2 and the factors F ` are given by

F ` (B) = A1C
0;1
0;0D

0;1
0;0;` + A1

�mmaxX
m<0

C1;m+10;m D1;m+1
0;m;` ; (4.24)

with A1 = A0e
2!2c
p
k?=8�=V . In the summation with respect to m, by

using the explicit form, Lk1 (x) = 1 + k � x, only one term corresponding to
an edge current along the circle with the radius R survives. The other terms
corresponding to the bulk currents cancel each other. After some algebra (as
shown in appendix F), we obtain

F ` (B) � F0p
�5

�
1 + �2

�2
�20

�2eR
2B2

�
1 +

�0
2�R2B

�
e

��R2

�0
B

�
Z k?R

0

dxx2mmax (B)+3e
� x2

2k2?l
2
B J`(x); (4.25)
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where ` is 0 or 2, and we introduced F0 = A0e
2c2=V

p
4��ee and x = k?�,

which has an order of magnitude of unity. �0 = 2�~=e is the �ux quantum,
and �e = 2�~=mec is the electron Compton wavelength.
The overall pro�le of these behaviors may be grasped through the qual-

itative nature of the integral in Eq. (4.25), we decompose the integrand
into

g(x) = x2mmax+3exp
�
�x2=2k2?l2B

�
(4.26)

and the Bessel function J` (x). We �rst �nd that the upper limit of the
integration can be written by

k?R =
�p
1 + �2

�eBR

�0

' ��eBR

�0
' 587�RB; (4.27)

where � = k?=kz is the parameter which characterizes the degree of the
paraxial approximation same as we introduced in Chapter 2. We next �nd
the extremal value by d

dx
g(x) = 0; which gives

2mmax + 3�
1

k?(B)2lB(B)2
x�2 = 0:

Noting that x � 0 from de�nition � � 0, we obtain the important relation

x�2 = k?(B)
2lB(B)

2 (2mmax + 3)

x� ' k?R

' 587�RB � B=B�; (4.28)

where we used the relation R� lB and introduced,

B� ' �0
��eR

' 1=587�R: (4.29)

We note that the extrema x� almost coincides with the upper limit of inte-
gration k?R. Using the values � = 0:1 and R = 10�2 m as an example, we
have x� ' 0:587B with B being measured in Tesla. On the other hand, the
positive zeros of the Bessel functions J` (x) have also an order of magnitude
of unity. Consequently, g(x) and J` (x) signi�cantly interfere with each other
and demonstrate oscillating behavior. That is to say, when the dark rings
of optical vortex determined by zeros of the pro�le, J`(k?�) = 0; coincides
with this peak at x�, the matrix element of the interaction vanishes and the
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induced current doesn�t appear. Furthermore, due to the factor in front of
the integral in Eq. (4.25), F ` (B) demonstrates evolving behavior.
Such a phenomenon can be controlled by the external magnetic �eld with-

out modi�cation to the optics system. By the energy conservation,

h
c

�OV
= ~!c; (4.30)

the wavelength of optical vortex beam must be tuned to induce the cyclotron
resonance. Therefore, the wavelength depends on the magnetic �eld as �OV �
1:07 � 10�2B�1 m. If the magnetic �eld B increases, the wavelength �OV
is tuned to become small and the dark rings of optical vortex is converged.
The dark rings will eventually coincide with the edge of system. The induced
current can thus be disappeared at the speci�c magnetic �eld.
We here show the physical values of the magnetic length lB, cyclotron

frequency !c, excitation energy between the LLL and 2LL �E, wavelength
of light to excite between the LLL and 2LL �OV, and the corresponding
wavenumber kOV, for the rest electron mass, me = 9:11 � 10�31 kg, in the
Table 4.1. As we mentioned in Sec. 3.5, the electron mass me should be
interpreted as an cyclotron e¤ective mass m�

e = 0:067me = 6:10 � 10�33 kg
for GaAs. For the purpose of reference, we also show these physical values
for GaAs in the Table 4.2

Magnetic length lB =
q

~
eB

2:56� 10�8
p
B (m)

Cyclotron frequency !c = eB
me

1:76� 1011B (rad�s�1)
Excitation energy �E = ~!c 1:16� 10�4B (eV)
Wave length of light �OV = 2�c

!c
1:07� 10�2B�1 (m)

Wave number of light kOV = 2�
�OV

5:87� 102B (m�1)

Table 4.1: Table of the physical values of the magnetic length lB, cyclotron
frequency !c, excitation energy between the LLL and 2LL �E, wavelength
of light to excite between the LLL and 2LL �OV, and the corresponding
wavenumber kOV. These values are obtained by the rest electron mass me =
9:11� 10�31 kg.

We more precisely see when the induced photocurrents are disappeared by
varying the magnetic �eld B. Since the disappearing points are determined
by the zeros of Bessel functions, J`(xi`) = 0, whose i-th zeros were denoted by
xi`, the disappearing points in real space are related to the radii of the dark
rings r`;i? in Eq. (2.38). However, since xi` can be viewed as �xed points, the
size of the dark rings r`;i? has correlation with the magnetic �eldB through the
transverse wavenumber k? and the energy conservation (4.30). We thus see
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Magnetic length lB =
q

~
eB

2:56� 10�8
p
B (m)

Cyclotron frequency !c = eB
me

2:63� 1012B (rad�s�1)
Excitation energy �E = ~!c 1:73� 10�3B (eV)
Wave length of light �OV = 2�c

!c
7:17� 10�4B�1 (m)

Wave number of light kOV = 2�
�OV

8:76� 103B (m�1)

Table 4.2: Table of the physical values of the magnetic length lB, cyclotron
frequency !c, excitation energy between the LLL and 2LL �E, wavelength
of light to excite between the LLL and 2LL �OV, and the corresponding
wavenumber kOV. These values are obtained by the e¤ective electron mass
for GaAs m�

e = 0:067me = 6:10� 10�33 kg.

that the disappearing points depend on the magnetic �eld. We here denote
the disappearing point by tuning the magnetic �eld as Bi

`. In particular, we
note that the electrons exist on the planar surface with the radius R and it
is �xed. To �nd the disappearing points in varying magnetic �eld, we see the
relation of i-th zeros of Bessel functions xi` to the magnetic �eld,

xi` ' �
�eR

�0
Bi
`

=
Bi
`

B� : (4.31)

We here give the examples of disappearing points Bi
` in the Table 4.3. We

used the parameters � = 0:1 and R = 10�2 m, and the physical values given
in the Table 4.1 to estimate Bi

`. The other values of B
i
` are estimated by the

i-th zeros of J0 (xi0) Bi
0

x10 = 2:40 4:12 T
x20 = 5:52 9:45 T

i-th zeros of J2 (xi2) Bi
2

x12 = 5:14 8:80 T
x22 = 8:42 14:1 T

Table 4.3: Table of the examples of disappearing point Bi
` via the zeros of

Bessel functions, J`(xi`) = 0. We here used the parameters � (= k?=kz) = 0:1
and R = 10�2 m, and the physical values given in the Table 4.1.

zeros of Bessel functions, J`(xi`) = 0, via Eq. (4.31).
F ` (B) (or �ji (!c)) demonstrates the oscillating behavior because of the

Bessel function J`(k?�). However, F ` (B) < 0 just shifts the phase in
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h�ji (t)i = �ji (!c) e
�i!ct by the phase �, but does not a¤ect the direction

of current. Then, to see the behavior of the amplitude of h�ji (t)i , we numer-
ically demonstrate B-dependence of the absolute value of F ` (B) for ` = 0; 2
and for R = 10�2m, 10�3m, and 10�4m in Fig. 4.3 for � = 0:1, Fig. 4.4
for � = 0:01, and Fig. 4.5 for � = 0:001. Since the �xed points are given
by xi` / �RBi

`, when � is �xed in addition to x
i
`, B

i
` and R is in an inverse

relationship. On the other hand, when R is �xed in addition to xi`, B
i
` and

� is in the inverse relationship.
By the asymptotic form of Bessel function at B � 1,

J`

�
�e�R

�0
B

�
�
r

2�0
��e�RB

cos

�
�e�R

�0
B � 2`+ 1

4
�

�
; (4.32)

the distance of the disappearing points of F ` (B) are determined by a half of
a period of cosine function �0=2�e�R. As shown in Figs. 4.3 - 4.5, because
of this, we �nd that the period of the disappearing points of F ` (B) and the
parameter � or the system size R are in an inverse relationship via the half
of the period of cosine function �0=2�e�R.
Fig. 4.6 demonstrates the magnetic �eld dependencies of F ` for ` = 0 and

2 again. However, we take the horizontal axis as the dimensionless parameter
B=B�, which corresponds to k?R � 1, and we chose R = 10�2 m and
� = 0:1. That is to say, Fig. 4.6 can be viewed as the zoomed one of (a) in
Fig. 4.3. Because the radial pro�le of OV has the oscillating behavior, the
amplitudes of absorption F ` oscillate and evolve with increasing the magnetic
�eld strength, and have vanishing points.

4.3 Magnetization Induced by Edge Current

In electromagnetism, it is known that a circular current induces a magnetiza-
tion via Biot-Savart law[58]. Then we naturally expect that the edge current
induces an orbital magnetization, which can be observed experimentally. In
this section, we see the magnetic vector potential separately contributed by
bulk currents and an edge current, and because of absence of the bulk cur-
rents, only the edge current contributes to the orbital magnetization induced
by OV-absorption.
In general, Maxwell�s equations in matter in a microscopic (unobservable
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atomic scale) region are written by

r � � =
�

"0
; (4.33)

r� � = �@�
@t
; (4.34)

r � � = 0; (4.35)

r� � = �0j+
1

c2
@�

@t
; (4.36)

where � is a electric �eld in the microscopic region and � is the magnetic
�eld in it. In actuality, physical quantities we observe are not microscopic
ones but macroscopic ones (or that in an experimentally observable scale).
Therefore, to connect microscopic Maxwell�s equations to macroscopic ones,
we introduce the macroscopic �elds E and B by averaging the microscopic
�elds � and � over the experimentally observable macroscopic region dV0 (r)
near r:

E (r; t) =
1

dV0 (r)

X
i

� (ri; t) � h� (r; t)i ; (4.37)

B (r; t) =
1

dV0 (r)

X
i

� (ri; t) � h� (r; t)i ; (4.38)

Such a spatial average was introduced by H. A. Lorentz[59]. Applying the
spatial average, macroscopic Maxwell�s equations are written as

r � E =
h�i
"0
; (4.39)

r� E = �@B
@t
; (4.40)

r �B = 0; (4.41)

r�B = �0 hji+
1

c2
@E

@t
; (4.42)

where we introduced the spatial averaged charge density h�i and similar
charge current density hji. The spatial averaged charge density h�i may be
written by a free charge part and a bound charge one as

h�i = h�ifree + h�ibound : (4.43)

Similarly, the spatial averaged charge current density hji may also be written
as

hji = hjifree + hjibound : (4.44)
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After this, since we now consider the magnetization induced by the circular
current via the Larmor motion, we focus on the bound charge current density.
Since a magnetization induced by a circular current via a Larmor mo-

tion can be regarded a microscopic magnetic moment, before considering the
macroscopic magnetic �eld generated by the orbital magnetization, we con-
sider the vector potential by the microscopic bound current density, which is
written by

a (r) =
�0
4�

Z
jbound (r

0)

jr� r0j dV
0; (4.45)

where this volume integral is done by the volume element with respect to r0.
This volume integral can be expanded by the multipole expansion under the
region r � r0;

1

jr� r0j =
1

r

1X
k=0

Pk (cos �)

�
r0

r

�k
(4.46)

=
1

r
+
r � r0
r3

+ � � � ; (4.47)

where Pk (x) is a Legendre polynomials and � is the angle between r and r0.
Because the �rst order of expansion gives zero by the volume integration,
we consider the expansion up to the second order, which gives

a (r) =
�0
4�

Z
r � r0
r3
jbound (r

0) dV 0: (4.48)

When we introduce the microscopic magnetic moment by the microscopic
bound current density,

m =
1

2

Z
r0 � jbound (r0) dV 0; (4.49)

the vector potential by the microscopic bound current density is rewritten as

a (r) =
�0
4�

m� r
r3

: (4.50)

Thus, we can reinterpret (4.45) as the magnetic �eld in matter generated by
the magnetic moment induced by the microscopic bound current density.
We next try to link the magnetic moment to a macroscopic orbital mag-

netization via spatial average by H. A. Lorentz. The vector potential at r
by the sum of contribution of the magnetic moment at position ri in the
observable macroscopic region dV0 (r0) � dV 0 is written as

da (r) =
�0
4�

X
i

m (ri)� (r� ri)
jr� rij3

: (4.51)
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Then the spatial average of magnetic moments m (ri) in observable macro-
scopic region dV 0 near position r0 gives the orbital magnetization at position
r0: X

i

m (ri) =M (r0) dV 0: (4.52)

Using this orbital magnetization, the spatial average of vector potential in
the observable macroscopic region dV 0 is thus given by

d ha (r)i = �0
4�

M (r0)� (r� r0)
jr� r0j3

dV 0; (4.53)

where h� � � i denotes the spatial average over observable macroscopic region
dV 0. Integrating the spatial average of vector potential over the whole region
D, the macroscopic vector potential in region D is obtained

A (r) =
�0
4�

Z
D

M (r0)� (r� r0)
jr� r0j3

dV 0: (4.54)

Noting that
r� r0

jr� r0j3
=rr0

�
1

jr� r0j3
�
; (4.55)

where rr0 is denoted the gradient with respect to r0, the integrand in (4.54)
is written by

M (r0)�rr0

�
1

jr� r0j3
�
=
rr0 �M (r0)

jr� r0j3
�rr0 �

�
M (r0)

jr� r0j3
�
: (4.56)

Then, applying the Stoke�s theorem to the second term in integral (4.54)
with (4.56) separates the integral to volume integral part and surface one:

A (r) =
�0
4�

Z
D

rr0 �M (r0)

jr� r0j dV 0 +
�0
4�

Z
@D

M (r0)� n̂
jr� r0j dS 0; (4.57)

where @D represents the surface of system volume D, n̂ is a normal vector
with respect to the surface @D, dS 0 and dV 0 indicate that the integration is
done with respect to a variable r0. Because the �rst term can be regarded
as the vector potential induced by the bulk current, jbulk = rr0 �M (r0),
whereas the second term is due to the surface current, jsurface =M (r0) � n̂,
the macroscopic vector potential is written by

A (r) =
�0
4�

Z
D

jbulk (r
0)

jr� r0j dV
0 +

�0
4�

Z
@D

jsurface (r
0)

jr� r0j dS 0: (4.58)
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Thus far, we have discussed the macroscopic magnetic �eld (vector po-
tential) induced by currents in system while keeping generality. We are now
ready to consider the orbital magnetization induced by OV-induced 2DEG
photocurrent. Regarding the position r0 as the guiding center r0 in (4.58),
the magnetic vector potential at the position r induced by the magnetization
at the guiding center r0 is given by

A2DEG (r) =
�0
4�

Z
D

rr0 �M (r0)

jr� r0j
dV0 +

�0
4�

Z
@D

M (r0)� n̂
jr� r0j

dS0

=
�0
4�

Z
D

jbulk (r0)

jr� r0j
dV0 +

�0
4�

Z
@D

jedge (r0)

jr� r0j
dS0; (4.59)

where D and @D is replaced by the area of the 2D system and its edge,
respectively. We note that dS0 and dV0 indicate that the integration is done
with respect to a variable r0. In particular, the second term in (4.59) is due
to the edge current at the system size R,

jedge =M (R)� n̂: (4.60)

However, since the bulk currents cancel out by Eq. (3.183) as mentioned in
the previous section and Sec. 3.6.3, that is, jbulk = 0, only the edge current
contributes to the magnetization in Eq. (4.59).
In Eq. (4.60), since the normal vector with respect to the edge of cir-

cular disk is given by n̂ = ê�, and the edge current �ows along the edge,
jedge � �j+` (!;B) ê�, the magnetization points along the z-direction, M (R)
�M` (!;B) êz, where

M` (!;B) = �j+` (!;B) : (4.61)

The magnetization in Eq. (4.61) can be regarded as a manifestation of the
magneto-electric e¤ect, since it is induced by the electric �eld of OV[55].
Therefore, the magnetic �eld dependences of magnetization is the same

as the behavior of the induced photocurrents. As discussed in the previous
section, when the dark ring r`;i? coincides with system edgeR, that is, r

`;i
? = R,

because of the roots of Bessel function, J`(k? [B]R) = 0, the vanishing points
of absorption are caused. Physically it means that when the dark rings of
OV coincide with the peak of electron distribution on the system edge, the
orbital magnetization disappears. It is signi�cant that this disappearance is
induced despite non-zero total intensity, which is related to the fact that the
photocurrent �ows only along the edge[55]. We thus �nd that Figs. 4.3 -
4.6 can be viewed as the demonstrations of the magnetization. It is worth
a mention that the similar result is obtained by using the cylindrical vector
beams[60].
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Figure 4.3: Magnetic �eld dependence of F ` for � (= k?=kz) = 0:1 when the
chemical potential is kept between the LLL and the second LL. (a) R = 10�2

m, (b) R = 10�3 m, R = 10�4 m. The solid line is for ` = 0 and the dotted
line ` = 2. The wavenumber also has B dependence as kOV = 5:87 � 102B
m�1.
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Figure 4.4: Magnetic �eld dependence of F ` for � (= k?=kz) = 0:01 when the
chemical potential is kept between the LLL and the second LL. (a) R = 10�2

m, (b) R = 10�3 m, R = 10�4 m. The solid line is for ` = 0 and the dotted
line ` = 2. The wavenumber also has B dependence as kOV = 5:87 � 102B
m�1.
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Figure 4.5: Magnetic �eld dependence of F ` for � (= k?=kz) = 0:001 when
the chemical potential is kept between the LLL and the second LL. (a) R =
10�2 m, (b) R = 10�3 m, R = 10�4 m. The solid line is for ` = 0 and
the dotted line ` = 2. The wavenumber also has B dependence as kOV =
5:87� 102B m�1.
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Figure 4.6: Magnetic �eld dependence of F ` with R = 10�2 m and
� (= k?=kz) = 0:1, when the chemical potential is kept between the LLL
and the second LL. The solid line is for ` = 0 and the dotted line ` = 2.
We scaled the horizontal axis by B� = �0=��eR = 1:70� 10�3=�R [T]. The
wavenumber also has B dependence as kOV = 5:87� 102B m�1.



Chapter 5

Proposal of Experimental
Scheme

In this Chapter, we propose a possible experimental scheme to demonstrate
theoretical results proposed in this dissertation.

5.1 Generation of Optical Vortex Beam

We describe the generation of the Bessel-mode optical vortex beams. A
zeroth-order Bessel beam was �rst generated by Durnin et al. by illuminating
an annular slit placed in the back focal plane of a lens with a plane wave[11].
However, because the illuminating beam is blocked by the aperture, this
method loses most of the beam intensity. Although the method using holo-
graphic elements achieves more higher e¢ ciency[61], using of an axicon lens
which is conically shaped optical element is the most e¢ cient technique to
generate a zeroth-order Bessel beam [62]. The higher-order Bessel beams can
also be produced by illuminating an axicon lens with a Laguerre�Gaussian
mode[16]. Fig. 5.1 illustrates the method to generate the Bessel mode beam
by use of the axicon lens. Since the Bessel-mode beam can be viewed as a
superposition of plane waves propagating on the cone with the cone angle
�k = tan�1 k?=kz, the Bessel beams are created within the yellow shaded
region in Fig. 5.1. The propagation distance of the created Bessel beam can
be estimated as zmax = w0k=k?, where w0 is the beam waist of Gaussian (or
LG) beam[16, 63]. In this region zmax, the characteristic phenomenon that
the intensity pro�le of the Bessel beam is reconstructed, that is, keeping the
propagation invariant, is occurred. This e¤ect is due to the conical wavefront
of the beam.
As described above, a LG beam is needed to generate the higher-order

81
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Figure 5.1: Generation of a Bessel beam by use of an axicon lens. Illuminat-
ing the axicon lens with a Laguerre-Gaussian (Gaussian) beam generates to
a higher-order (zeroth-order) Bessel beam within the yellow shaded region.
The propagation distance of Bessel beam is given by zmax.

Bessel beam. The typical methods of generation of LG-mode beam are
known: illuminating a spiral phase plate[64], a forked holographic �lter[65,
66] with a Gaussian light beam, among other things.
First, we describe the generation of LG beam by use of a spiral phase

plate. The spiral phase plate is a transparent plate whose thickness increases
proportional to the azimuthal angle � around the center of the plate as shown
in Fig. 5.2. When the incident beam passes through the spiral phase plate,
the amplitude of incident beam u changes to the amplitude after the plate
u0 as

u0 = u exp (�i �` �) ; (5.1)

with �` given by

�` = �n
h

�
; (5.2)

where �n is the di¤erence in refractive index between the plate and its
surroundings and h is the step height of the plate[64]. The LG beam carrying
the higher order OAM can be produced via satisfying the relation �`.
Next, we describe the generation of LG beam by use of a numerically com-

puted hologram. The holographic method can be available by use of a spatial
light modulators (SLMs). A computer-generated folk-shaped hologram can
produce a light wave with helical phasefronts and a desired orbital angular
momentum in the direction of the �rst di¤raction order by illuminating the
hologram with a plane wave. If the `-th folked hologram is illuminated with
a plane wave, the �rst order di¤racted beams have the OAM L = �`~. For
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Figure 5.2: Schematic of the generation of the Laguerre-Gaussian beam by
use of the spiral phase plate.

example, as shown in Fig. 5.3, two-folked hologram can produce the LG
beam with ` = �2 in the direction of the �rst di¤raction order[65].

5.2 In�uence of Disorder and Spin in 2DEG

First, we discuss the in�uence of a disorder to our results. As reviewed
in Chap. 3, 2DEG under the magnetic �eld has degenerate energy levels
(3.58) and �-function-shaped density of states (3.84). However, yet it is
impossible to remove disorder, that is, impurities or defects, completely from
real samples, the in�uence of disorder has been ignored there. The existence
of the disorder changes both the spatial extent of the density of states and the
electronic energy[67]. Thus, the degenerate Landau level (LL) is broadened
into a Landau sub-band described by an approximate Lorentzian lineshape
centered at the unperturbed LL. Recall our assumption that the chemical
potential lies in a gap between the Landau levels, that is, in an insulating
region. For this purpose, it is necessary that a width of the Landau sub-
band � satis�es � � ~!c. It was shown that, in the self-consistent Born
approximation[68, 69], the width of the Landau sub-band is written in the
form

� = ~
r
2

��
!c; (5.3)
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Figure 5.3: Schematic of the generation of the Laguerre-Gaussian beam by
use of the holography. Twofold dislocation hologram can generate the LG
beam with ` = �2 in the direction of the �rst di¤raction order.

where � is the relaxation time. Experimentally, the width of the Landau
sub-band is estimated by

� = p

s
B

�e
(5.4)

with the mobility of the sample �e and p = 2:3 � 0:3 � 10�2 meV/T[70]
and that, for good quality samples, � � ~!c is satis�ed. Therefore, as
long as good quality samples are used, the existence of a disorder would be
unin�uential in our discussion.
Next, although our results in Chap. 4 have been based on a spinless 2DEG

model, we here discuss how our results are experimentally achieved in case
of the existence of an electron spin. As well-known, when an atomic electron
possesses a spin, the presence of a magnetic �eld splits an atomic energy level
into several sub-levels due to Zeeman e¤ect. Such the e¤ect occurs also in
2DEG in a magnetic �eld. That is to say, in Landau-quantized electron with
the spin degree of freedom, the presence of the strong magnetic �eld causes
the splitting of the LL into the Zeeman sub-levels whose gap is proportional
to the magnetic �eld strength, �E = g�BB with Landé g-factor and the
Bohr magneton �B. Nevertheless, even if the electron spin is considered,
we can treat non�spin-�ip electronic transitions between the Lowest Landau
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level (N = 0) (LLL) and the second Landau level (N = 1) (2LL). If the
chemical potential lies in the gap between the Zeeman sub-levels of the LLL
in some way and other, the lower sub-level of the LLL is fully occupied by
only the electrons with the spin parallel to the magnetic �eld and the upper
sub-level of it becomes completely empty. When the photon possessing the
same amount of the energy di¤erence between the LLs, E = ~!c, is incident
to the system, the electron in the lower sub-level of the LLL transfers to the
that of the 2LL. Such a transition does not involve a spin-�ip process. In
this way, non�spin-�ip electronic transitions between the LLL and the 2LL
would be achieved (see Fig. 5.4).

Figure 5.4: A non-spin-�ip process in transition between the LLL to 2LL.
The existence of impurity in a sample, each degenerate Landau level is broad-
ened into a band. (left side) In case of presence of electron spin, each spin-
degenerated Landau band splits into Zeeman sub-band. By tuning a chemical
potential to lie in a gap between the Zeeman sub-band of the LLL, the non-
spin-�ip prosess in the transition between the LLL to 2LL would be achieved
(right side).
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5.3 Possible Experimental Setup

We illustrate the possible concept of experimental setup to con�rm the con-
sequence of our theory in Fig. 5.5. Throughout this section, we use the
physical values for GaAs/AlGaAs heterostructures as the example.

Figure 5.5: Conceptual illustration of the experimental setup. To cause the
transion between the LLL and 2LL by a light beam, a THz laser generator
would be used. A linear polarizer, SLM (or a spiral phase plate), and �=4
retarder are used to generate LG-beam with the higher order OAM. The
Bessel beam converter consists of an axicon lens. 2DEG sample is located
in a cyostat to keep a low temperature. In case of observing a transmitted
beam, CCD camera would be needed.

First, we consider the setup for the electron system as follows: To avoid a
electronic thermal excitation, a 2DEG sample is located in a cryostat to keep
a low temperature. We have considered the transition between the LLL and
2LL. It is known that electrons can occupy only the LLL when the magnetic
�eld is applied typically over 8 T for GaAs/AlGaAs heterostructures with
the electron density ne � 2:3 � 1015 m�2[71]. Furthermore, to realize the
completely �lled LLL even when B > 8 T or to keep the chemical potential
between N = 0 and N = 1, we need to supply electrons externally via an
electrode, etc. At this moment, the typical cyclotron frequency is given by
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fc = !c=2� = 4:19 � 1012 Hz at B = 10 T (we used the e¤ective electron
mass for GaAs).
Next, we consider the generation of incident Bessel beams. To induce

the cyclotron resonance by lights, a THz laser beam generator is required.
The unpolarized beam generated by THz beam generator is converted into
the linearly polarized beam by passing through a linear polarizer. The spa-
tial light modulator (SLM) or the spiral phase plate produces the LG beam
with an orbital angular momentum. A �=4 retarder converts the linearly
polarized beam into the circularly polarized beam. Thus, the light beam car-
rying an orbital angular momentum in addition to spin angular momentum
is produced. We here note that the arrangement of the retarders and SLM is
changed by the speci�cation of SLM. After generation of the higher order LG
beam, it is necessary to convert the LG beam into the higher order Bessel
beam. How to convert is described in Sec. 5.1.
Thus, the higher order Bessel beam is input to 2DEG sample. The direc-

tion of light�s propagation is tuned to be parallel to the magnetic �eld which
is perpendicular to the 2DEG surface. We naturally arrive at two ideas how
to con�rm if the OV-photocurrent is induced. The �rst is the direct mea-
surement of the induced current via an electric contact on the system edge.
The second is to measure the intensity of transmitted light via CCD camera
in back of the sample, because the camera would not observe the transmitted
light when occurring OV-absorption (see Fig. 5.5).



Chapter 6

Summary and Future
Perspective

An optical vortex has a helical wavefront in classical picture. Because the
helical wavefront can apply an orbital angular momentum to matter, the
optical vortex is characteristic light which can carry the orbital angular mo-
mentum, whereas the plane wave light carries only spin angular momentum
via the helicity. The optical vortex has arose much attention to application
by use of orbital angular momentum in the past decades. Additionally, the
optical vortex has a cylindrical spatial distribution consisting of bright and
dark rings which can trace back to transverse component of wavevector.
Babiker et al. has stated that the optical orbital angular momentum

can be transferred only to the center of mass motion in the electric dipole
transition[31]. Moreover, it is known that a free electron can not absorb
a photon. Therefore, to avoid two di¢ culties and to consider an electric
dipole transition in coupling with electrons, it is naturally expected that two
dimensional electron gas is good candidate because the electron under the
magnetic �eld can be quantized the energy and carry a quantized angular
momentum.
In this dissertation, we demonstrated how the optical vortex beam car-

rying the orbital angular momentum modi�es the selection rules for the ab-
sorption processes of the Landau-quantized two-dimensional electron gas.
Concerning Kubo formula or the �rst order perturbation theory of photocur-
rent, the matrix elements of photocurrent hn;m jj�jn0;m0i are allowed when
�m = m0 �m = 1. On the other hand, the matrix elements of interaction
Hamiltonian hn0;m0jAOV

`;� � rjn;mi gives the angular momentum conservation
�m = J = `+�. We thus found that the vortex beam with the total angular
momentum J = 1 can be absorbed to induce the photocurrents. Because the
optical vortex carries the spin � = �1, we obtained two possible combina-

88



CHAPTER 6. SUMMARY AND FUTURE PERSPECTIVE 89

tions: ` = 2 and � = �1 or ` = 0 and � = 1, cause the transitions between
the lowest (N = 0) and the second lowest (N = 1) Landau levels when
the beam propagates along the direction of the external magnetic �eld and
is illuminated at the center of circular disk geometry. While the case with
` = 0 and � = 1 corresponds to the well-known optical transitions under the
circularly polarized light, the case with ` = 2 and � = �1 is a characteristic
result, which shows that it is the total angular momentum of light that is
absorbed by electrons[39].
We also demonstrated that, in the framework of Kubo�s linear response

theory, the optically induced current is localized near the edge of the sample,
so that when excited with the Bessel beam, the photocurrent disappears when
the dark rings of the Bessel beam coincide with the edge of the sample. To see
this, we propose a measurement of induced photocurrent by varying magnetic
�eld with keeping the chemical potential between N = 0 and N = 1 and
without modi�cation to the optics system. At this moment, we should notice
that, since the electron excitation energy changes with varying the magnetic
�eld, the energy of lights must be tuned to generate the excitation[39].
The cancellation (absence) of the bulk currents was also interpreted in

terms of the coherent state representation. Consequently, we demonstrated
how the orbital magnetization is induced by only the edge currents[55]. We
may experimentally con�rm the absence of bulk currents by measuring the
disappearing of the orbital magnetization when the optical dark rings coin-
cide with the system edge.
Concerning the quantitative values of parameters used in the present

theory, we here give comments on the parameters experimentally to observe
such phenomena. The �rst is on the external magnetic �eld. For example,
for GaAs/AlGaAs heterostructures with the electron density ne � 2:3� 1015
m�2, electrons can occupy only the lowest Landau level when the magnetic
�eld is applied typically over 8 T[71]. To realize the completely �lled lowest
Landau level even when the external magnetic �eld is applied over 8 T or to
keep the chemical potential between the lowest Landau level and the second
Landau level, we need to supply electrons from the outside via an electrode,
etc. The next is on the frequency of optical vortex. As shown in Table 4.2,
the frequency of excitation energy between N = 0 and N = 1 gives 4:19 THz
at B = 10 T for GaAs system. Therefore, to induce such excitation, the THz
beams are needed.
For such electron systems, we proposed the possible experimental scheme

to con�rm our consequences. After generating the THz beam, it is necessary
to convert the beam into the Bessel beam carrying the higher order orbital
angular momentum. The methods of generations of the Bessel beam were
overviewed in Sec. 5.1. Polarizers or retarders are available to produce the
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Bessel beams carrying the spin angular momentum in addition to the orbital
angular momentum. The higher order Bessel-mode optical vortex beams
irradiate the 2DEG samples located in a cryostat to keep a low temperature.
To observe the absorption of the optical vortex beam, the direct measurement
of the induced photocurrent via electric contacts on the system edge or the
observation of the transmitted light via CCD camera in back of the samples
would be available.
To check the present theoretical scheme from more general viewpoints,

we generalized the dipole coupling scheme to general multipolar couplings
in Appendix H. Then we con�rm the present results by regarding the di-
pole coupling as a special case with l00 = 1 in Eq. (H.8). We reconstructed
the minimal-coupling Hamiltonian by expanding by the vector spherical Har-
monics. When the dipole moment of current in rotation on a surface couples
with the optical beam propagating normal to the surface, the photoabsorp-
tions are allowed ` = 0 and � = 1, or ` = 2 and � = �1. This is completely
consistent with calculation without multipolar expansion. When we know
the symmetry of materials, we may assume the current distributions. Since
we have obtained the general expressions of the multipolar Hamiltonian, we
can know the spectroscopic selection rules beyond the dipole transition.
Throughout this dissertation, we assumed the propagation of optical vor-

tex to be parallel to the magnetic �eld. However, it is possible to irradiate
with the vortex light beam propagating anti-parallel to the magnetic �eld.
Since the magnetic �eld then breaks time-reversal symmetry, the direction
of currents is determined. When the magnetic �eld �ips into the antiparal-
lel direction to z axis, the optical angular momentum absorption must thus
change into J = �1, that is, ` = 0 and � = �1, or ` = �2 and � = 1.
This corresponds to change of the magnetic chirality via the electron orbital
motion.
As future perspectives, the couplings of optical vortex with materials have

various potentiality to give access to undiscovered phenomena. For examples,
in heavy electrons in atoms, a spin-orbit interaction plays important role to
unify spin and orbital degree of freedom. The optical vortex has multipolar
degrees of freedom by nature due to the orbital angular momentum. There-
fore, coupling of the multipoles in matter and in light will provide a huge
variety of transitions.
The rotation of polarization of optical vortex itself is also considerable.

The polarization of plane wave can be rotated when passing through an
optical active material. That is to say, the material with inversion symmetry
is essential to induce the optical rotation. On the other hand, optical vortex
possessing the helical wavefront has �nite angular momentum. Then, even
when the optical vortex beam traverses a material with inversion symmetry,
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the absorption strengths are expected to depend on the spin helicity of the
light.
Finally, we comment a Rabi oscillation. The Rabi oscillation consists a

periodic change between photoabsorption and stimulated photoemission in a
two-level system with an illumination of a light beam. On the other hand, our
present theory is based on only the one-photon absorption in the transition
of a two-level system associated with the lowest Landau level (N = 0) and
the second Landau level (N = 1). Thus, our theory is not exactly equivalent
to the Rabi oscillation processes. However, as the further development of our
present theory, the Rabi oscillation is also considerable. The Rabi frequency
between each Landau level is given by[72]


 =

s
j
j2

~2
+
(! � !c)

2

4
; (6.1)

where 
 =


N = 1

��AOV
`;� � j

��N = 0
�
. Thus, it is expected that the absorption-

emission cycle (the inverse of the Rabi frequency) depends on the radial
pro�le of optical vortex beam.



Appendix A

Kubo Formula

We here review the derivation of Kubo formula[56]. The total Hamiltonian
with weekly perturbed by external �eld given by a vector potential A is
written by

H = H0 +�H

= H0 �A � j; (A.1)

where j is an electric current and H0 is a non-perturbative Hamiltonian. We
here assume time-dependence of the external �eld is given by A(t) = Ae�i!t.
The wave function in interaction picture in the �rst order perturbation is
given by

jNiI = jn;mi �
i

~

Z t

�1
dt0e

i
~ Ĥ0t

0
(�Â(t0) � ĵ)e� i

~ Ĥ0t
0jn;mi; (A.2)

where index I indicates that the wave functions or the operators are rep-
resented in the interaction picture. The operators in the interaction pic-
ture are transformed from the operators in the Schrödinger picture Ô by
ÔI (t) = e

i
~ Ĥ0tÔe�

i
~ Ĥ0t. Then, we can calculate the expectation value of the

response of i-th component of an observable operator Ô within the �rst order
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in A,

h�Oi(t)i = hOi(t)i �
D
n;m

���ÔiI(t)���n;mE
=
D
N
���ÔiI(t)���NE

I
�
D
n;m

���ÔiI(t)���n;mE
' i

~

Z t

�1
dt0hn;mjÔiI(t)(Â(t0) � ĵ)I jn;mi

� i

~

Z t

�1
dt0hn;mj(Â(t0) � ĵ)IÔiI(t)jn;mi

=
i

~

Z t

�1
dt0hn;mj[ÔiI(t); (Â(t0) � ĵ)I ]jn;mi

=
i

~

Z t

�1
dt0hn;mj[ÔiI(t); (Â � ĵ)I(t0)]jn;mie�i!t

0

=
i

~

Z 1

�1
dt0�(t� t0)hn;mj[ÔiI(t); (Â � ĵ)I(t0)]jn;mie�i!t

0
: (A.3)

By replacing � = t� t0, we can write as

h�Oi(t)i =
i

~

Z 1

�1
d��(�)hn;mj[ÔiI(�); (Â � ĵ)I(0)]jn;mie�i!(t��)

= �Oi(!)e
�i!t; (A.4)

where the Fourier component is denoted by

�Oi(!) =
i

~

Z 1

0

dtei!thn;mj[ÔiI(t); (Â � ĵ)I(0)]jn;mi: (A.5)

Taking account of a �nite temperature e¤ect, we need to take the statistical
average of (A.5),

�Oi(!) =
i

~

Z 1

0

dtei!t
X
n;m

e��En;m

Z
hn;mj[ÔiI(t); (Â � ĵ)I(0)]jn;mi; (A.6)

where � = 1=kBT is an inverse temperature with a Boltzmann constant kB,
and Z is the canonical partition function. Furthermore, after integrating
respect to t, when we take account of a impurity e¤ect by replacement ! !
! + i�=~, we obtain

�Oi(!) = �
X
n;m

X
n0;m0

e��En;m � e��En0;m0
Z

hn;mjÔijn0;m0ihn0;m0jÂ � ĵjn;mi
En;m � En0;m0 + ~! + i�

:

(A.7)
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Or using a Fermi-Dirac distribution f(En;m) = 1= exp [�(En;m � �)] + 1 with
where the chemical potential �, we have

�Oi(!) = �
X
n;m

X
n0;m0

(f(En;m)� f(En0;m0))
hn;mjÔijn0;m0ihn0;m0jÂ � ĵjn;mi

En;m � En0;m0 + ~! + i�
;

(A.8)
which gives Eq. (4.7) when we adopt Ôi = ji.



Appendix B

Coordinate Transform

Cylindrical Basis

We here summarize the property of the cylindrical basis. The rotation matrix
with respect to z axis is given by

Rz (�) =

�
cos� sin�
� sin� cos�

�
; (B.1)

which generates the transformation from Cartesian basis to the cylindrical
one as the following�

ê�
ê�

�
= Rz (�)

�
êx
êy

�
=

�
cos�êx + sin�êy
� sin�êx + cos�êy

�
: (B.2)

Its inverse transformation is given by�
êx
êy

�
= R�1z (�)

�
ê�
ê�

�
=

�
cos�ê� � sin�ê�
sin�ê� + cos�ê�

�
: (B.3)

The vector components are given by the projection from an arbitrary vector
a (= axêx + ayêy) in the Cartesian coordinates,

a� = e� � a = ax cos�+ ay sin�;

a� = e� � a = �ax sin�+ ay cos�: (B.4)

Chiral (Helicity) Basis

The transformation matrix from the Cartesian basis to chiral one is de�ned
by

Rch =

 
1p
2

ip
2

1p
2
� ip

2

!
: (B.5)
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Then we see that its transformation is given by�
ê+
ê�

�
= Rch

�
êx
êy

�
=

1p
2

�
êx + iêy
êx � iêy

�
: (B.6)

Its inverse transformation is also given by�
êx
êy

�
= R�1ch

�
ê+
ê�

�
=

1p
2

�
ê+ + ê�

�i (ê+ � ê�)

�
: (B.7)

The orthogonality satis�es the following relations,

ê�i � êj = �ij;

ê� � ê� = 0;
ê+ � ê� = �iêz;
ê� � êz = �iê�: (B.8)

The vector components in chiral basis is represented by those of the Cartesian
basis are written by

a+ = e�+ � a =
ax � iayp

2
;

a� = e�� � a =
ax + iayp

2
; (B.9)

where we used the arbitrary vector in the Cartesian coordinates as a =
axêx + ayêy. The vector components in chiral basis can also be written in
cylindrical basis by using (B.4) as

a+ =
a� � ia�p

2
e�i�;

a� =
a� + ia�p

2
ei�: (B.10)



Appendix C

Calculation of the Radial
Integral Cn

0;m0
n;m

The radial integral Cn
0;m0

n;m given by Eq. (4.11) is explicitly expressed as

Cn
0;m0

n;m =

Z 1

0
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Ljmjn

�
�2

2l2B

�
L
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n0

�
�2

2l2B

�
;

(C.1)

where the normalization constant is given by

Nnm =

�
n!

(n+ jmj)!

�1=2
1

2jmj=2lB
: (C.2)

Changing the variable � to x = �2=2l2B, we can rewrite the radial integral as
the following,

Cn
0;m0

n;m = NnmNn0m02
jmj+jm0j+1

2 l3B

Z 1

0

dxe�xx
jmj+jm0j+1

2 Ljmjn (x)L
jm0j
n0 (x)
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� 1
2
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� 1
2

2
1
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Z 1

0

dxe�xx
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2 Ljmjn (x)L
jm0j
n0 (x) :

(C.3)

Next, we calculate the integral
R1
0
dxe�xx

jmj+jm0j+1
2 L

jmj
n (x)L

jm0j
n0 (x). We

use the orthogonality of the associated Laguerre polynomials,Z 1

0

dxe�xx�L�n(x)L
�
m(x) =

(
0 form 6= n
(�+n)!
n!

form = n
for Re� > �1; (C.4)
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and the formula
L��1n (x) = L�n(x)� L�n�1(x): (C.5)

In case of m0 = m+ 1 with m � 0, we haveZ 1

0

dxe�xx
jmj+jm+1j+1
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n0 (x)
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Z 1
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For n0 = n, we obtain the radial integral Cn
0;m0

n;m as
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For n0 = n� 1, we obtain
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In case of m0 = m+ 1 with m � �1, we haveZ 1

0
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For n0 = n, we obtain the radial integral Cn
0;m0

n;m as
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For n0 = n+ 1, we obtain
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In case of m0 = m+ 1 with �1 < m < 0, by using a formula of integral[49],Z 1
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for Re(�+ �) > �1; (C.12)
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it givesZ 1
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We then obtain the radial integral Cn
0;m0

n;m as
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We mention that since m is not an integer in the region �1 < m < 0, this
will not be used in our discussion.
In case of m0 = m� 1 with m � 1, we haveZ 1
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For n0 = n, we obtain the radial integral Cn
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n;m as
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For n0 = n+ 1, we obtain

Cn+1;m�1n;m =

�
n!

(n+m)!

� 1
2
�
(n+ 1)!

(n+m)!

� 1
2

2
1
2 lB

�
�(n+m)!

n!

�
= �

�
(n+ 1)!

n!

�
2
1
2 lB

= �
p
2(n+ 1)lB: (C.17)

In case of m0 = m� 1 with m � 0, we haveZ 1
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For n0 = n, we obtain the radial integral Cn
0;m0

n;m as

Cn;m�1n;m =

�
n!

(n�m)!

� 1
2
�

n!

(n�m+ 1)!

� 1
2

2
1
2 lB
(n�m+ 1)!

n!

=

�
(n�m+ 1)!

(n�m)!

� 1
2

2
1
2 lB

=
p
2(n�m+ 1)lB: (C.19)

For n0 = n� 1, we obtain
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In case of m0 = m � 1 with 0 < m < 1, although m is not an integer in
the region, we demonstrate the radial integral Cn

0;m0
n;m for reference. Using an
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integral formula (C.12), we obtain the integral asZ 1

0

dxe�xx
jmj+jm�1j+1

2 Ljmjn (x)L
jm�1j
n0 (x)

=

Z 1

0

dxe�xxLmn (x)L
�m+1
n0 (x)

= (�1)n+n0 (n+m)!

n0!(n+m� n0)!

(n0 �m+ 1)!

n!(n0 �m+ 1� n)!
: (C.21)

We then obtain the radial integral Cn
0;m0

n;m as

Cn
0;m�1

n;m =

�
n!

(n+m)!

� 1
2
�

n0!

(n0 �m+ 1)!

� 1
2

2
1
2 lB

� (�1)n+n0 (n+m)!

n0!(n+m� n0)!

(n0 �m+ 1)!

n!(n0 �m+ 1� n)!

=

r
2
(n+m)!(n0 �m+ 1)!

n!n0!

(�1)n+n0lB
(n+m� n0)!(n0 �m+ 1� n)!

:

(C.22)

This will not be used as mentioned before.



Appendix D

Energy Di¤erence En;m � En0;m0

In this appendix, we calculate the energy di¤erence in case of transitions
from N = 0 to N = 1. First, we consider m0 = m+1 case. Using the energy
eigenvalue Eq. (3.58), we obtain

Enm � En;m+1 = ~!c
�
�m+m

2
� �(m+ 1) +m+ 1

2

�
= 0 (D.1)

for n0 = n and m � �1,

Enm � En;m+1 = ~!c
�
m+m

2
� (m+ 1) +m+ 1

2

�
= �~!c (D.2)

for n0 = n and m � 0,

Enm � En�1;m+1 = ~!c
�
1 +

m+m

2
� (m+ 1) +m+ 1

2

�
= 0 (D.3)

for n0 = n� 1 and m � 0, and

Enm � En+1;m+1 = ~!c
�
�1 + �m+m

2
� �(m+ 1) +m+ 1

2

�
= �~!c (D.4)

for n0 = n+ 1 and m � �1.
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Next, we consider m0 = m� 1 case. Similarly, we obtain

Enm � En;m�1 = ~!c
�
�m+m

2
� �(m� 1) +m� 1

2

�
= 0: (D.5)

for n0 = n and m � 0,

Enm � En;m�1 = ~!c
�
m+m

2
� (m� 1) +m� 1

2

�
= ~!c (D.6)

for n0 = n and m � 1,

Enm � En�1;m�1 = ~!c
�
1 +

�m+m

2
� �(m� 1) +m� 1

2

�
= ~!c (D.7)

for n0 = n� 1 and m � 0, and

Enm � En+1;m�1 = ~!c
�
�1 + m+m

2
� (m� 1) +m� 1

2

�
= 0 (D.8)

for n0 = n+ 1 and m � 1.
We summarize these results as below,

En;m � En0;m+1 =

8>>><>>>:
0 for n0 = n andm � �1
�~!c for n0 = n andm � 0
0 for n0 = n� 1 andm � 0
�~!c for n0 = n+ 1 andm � �1

; (D.9)

and

En;m � En0;m�1 =

8>>><>>>:
0 for n0 = n andm � 0
~!c for n0 = n andm � 1
~!c for n0 = n� 1 andm � 0
0 for n0 = n+ 1 andm � 1

: (D.10)



Appendix E

Dipole Transition from
Minimal Coupling

We present the derivation of Eq. (4.16). We need to compute the commutator�
H0;A

OV
�
. After some calculations, we obtain

[H0;A
OV]=AOV

�
~2k2OV
2me

�
�
~kOV
me

�
�(�i~r)+ e

me

Aext �~kOV)
�
; (E.1)

where kOV is the wavenumber vector of OV and kOV is its magnitude.
Next, we evaluate the matrix element of the minimal coupling hn0;m0jAOV�

jjn;mi with a current operator, j = (e=me) (p+ eAext). Noting that this cur-
rent operator satis�es p+eAext = (ime=~) [H0; r], by using the commutation
relation (E.1), we obtain

hn0;m0jAOV � jjn;mi = e

me

hn0;m0jAOV � ime

~
[H0; r]jn;mi

=
ie

~
(En0;m0 � En;m)hn0;m0jAOV � rjn;mi

� ie

~
~2k2OV
2me

hn0;m0jAOV � rjn;mi

� ie

~
~e
me

hn0;m0j(Aext � kOV)(AOV � r)jn;mi

� e

~
~2

2me

hn0;m0jAOV � kOVjn;mi

� e

~
~2

2me

hn0;m0j(AOV � r)kOV � grad jn;mi: (E.2)

The second term is 10�11 times weaker than the �rst term for B = 10 T
and can be dropped. Furthermore, the OV travels along z-axis and the
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wavenumber vector of the OV is approximately described as, kOV � kzêz,
in the paraxial approximation as shown in Eq. (2.52). On the other hand,
Aext; AOV; and, grad	nm (�; �; z) have no z-component. The inner products
with kOV in the third, fourth, and �fth terms in Eq. (E.2) thus vanishes.
As a consequence, the �rst term only survives in the matrix element of the
minimal coupling,

hn0;m0jAOV � jjn;mi � ie

~
(En0;m0 � En;m)hn0;m0jAOV � rjn;mi: (E.3)

which is Eq. (4.16).



Appendix F

Calculation of F ` (B)

To obtain (4.25), we show the calculation F ` (B) of Eq. (4.24). We have
assumed the �lling factor � = 1, that is, the initial state is in the ground
state n = 0 and m � 0. When we use the results in Appendix C, Eq. (4.24)
reduces to

F ` (B) =
A0e

2!2c
V

r
k?
8�

"
lB
p
2D0;1

0;0;` �
�mmaxX
m<0

lB
p
2D1;m+1

0;m;`

#

=
A0e

2lB!
2
c

V

r
k?
4�

"
D0;1
0;0;` �

�mmaxX
m<0

D1;m+1
0;m;`

#
: (F.1)

By using the explicit form of the associated Laguerre polynomials

Lk0 (x) = 1;

Lk1 (x) = 1 + k � x; (F.2)

and introducing a dimensionless variable x = k?�, we can respectively rewrite
D0;1
0;0;` and D

1;m+1
0;m;` as

D0;1
0;0;` =

Z R

0

d��2R0;1(�)R0;0(�)J`(k?�)

=
1p
2l2B

Z R

0

d��2e
� �2

2l2
B

�
�

lB

�
L10

�
r2

2l2B

�
L00

�
r2

2l2B

�
J`(k?�)

=
lBp
2

�
1

k?lB

�4 Z k?R

0

dxx3e
� x2

2k2?l
2
B J`(x); (F.3)
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and

D1;m+1
0;m;` =

Z R

0

d��2R1;m+1(�)R0;m(�)J`(k?�)

=
1

(�m)!
1

2�m�
1
2 l2B

�
Z R

0

d��2e
� �2

2l2
B

�
�

lB

��2m�1
L�m�11

�
�2

2l2B

�
L�m0

�
�2

2l2B

�
J`(k?�)

=
1

(�m� 1)!
lB

2�m�
1
2

�
1

k?lB

��2m+2 Z k?R

0

dxx�2m+1e
� x2

2k2?l
2
B J`(x)

� 1

(�m)!
lB

2�m+
1
2

�
1

k?lB

��2m+4 Z k?R

0

dxx�2m+3e
� x2

2k2?l
2
B J`(x): (F.4)

To viewability, we change m to �m0 (m0 > 0);

D1;�m0+1
0;�m0;` =

1

(m0 � 1)!
lB

2m
0� 1

2

�
1

k?lB

�2m0+2 Z k?R

0

dxx2m
0+1e

� x2

2k2?l
2
B J`(x)

� 1

m0!

lB

2m
0+ 1

2

�
1

k?lB

�2m0+4 Z k?R

0

dxx2m
0+3e

� x2

2k2?l
2
B J`(x): (F.5)

We proceed to sum with respect to m0 up to mmax. and show that only the
last term survives because of cancellation,

D0;1
0;0;` �

mmaxX
m0>0

D1;�m0+1
0;�m0;`

=
lBp
2

�
1

k?lB

�4 Z k?R

0

dxx3e
� x2

2k2?l
2
B J`(x)

�
mmaxX
m0>0

1

(m0 � 1)!
lB

2m
0� 1

2

�
1

k?lB

�2m0+2 Z k?R

0

dxx2m
0+1e

� x2

2k2?l
2
B J`(x)

+

mmaxX
m0>0

1

m0!

lB

2m
0+ 1

2

�
1

k?lB

�2m0+4 Z k?R

0

dxx2m
0+3e

� x2

2k2?l
2
B J`(x)

=
1

mmax!

lB

2mmax+
1
2

�
1

k?lB

�2mmax+4 Z k?R

0

dxx2mmax+3e
� x2

2k2?l
2
B J`(x):

(F.6)
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We apply Stirling�s approximation n! �
p
2�n (n=e)n since mmax � 1,

D0;1
0;0;` �

mmaxX
m0>0

D1;�m0+1
0;�m0;` �

1p
2�mmax

�
e

2mmax

�mmax lBp
2

�
1

k?lB

�2mmax+4

�
Z k?R

0

dxx2mmax+3e
� x2

2k2?l
2
B J`(x): (F.7)

We thus obtain

F ` (B) =
A0e

2l2B!
2
c

2
p
2�V

r
k?

2mmax

�
e

2mmax

�mmax
�

1

k?lB

�2mmax+4

�
Z k?R

0

dxx2mmax+3e
� x2

2k2?l
2
B J`(x): (F.8)

We here denote the factor in front of the integral as (A). By using the
notations !c = eB=m; lB =

p
~=eB; and

mmax =
1

2

�
eR2

~
B � 1

�
; (F.9)

we obtain

(A) =
A0e

2~2

2
p
2�V m2

e

e3B3

~3k3?

r
~
eB

k?
e

 
e

k2?R
2
�
1� ~

eBR2

�! eR2

2~ B

:

Next, we use the approximate expressions

1

1� ~
eBR2

� 1 + ~
eBR2

(F.10)

for ~=eBR2 � 1. We thus obtain

(A) � A0e
2~2

2
p
2�V m2

e

e3B3

~3k3?

r
~
eB

k?
e

�
1

k2?R
2

�
1 +

~
eBR2

�
e

� eR2

2~ B

: (F.11)

We here introduce the Compton wavelength, �e = 2�~=mec, and the quan-
tum �ux, �0 = 2�~=e. When we use the energy conservation, eB=me = ck �
ck?=�, with k = k?

p
(1 + �2) =�2 � k?=�, we can calculate (A) as

(A) � A0e
2~2

2
p
2�V m2

e

eB

~
m3
ec
3

�3e3B3

�
eB

~

�3=2
�
r
�eB

mece

�
1 + �2

�2
m2
ec
2

e2B2R2

�
1 +

~
eBR2

�
e

� eR2

2~ B

=
A0e

2c2

V
p
4��5�ee

�
1 + �2

�2
�20

�2eB
2R2

�
1 +

�0
2�BR2

�
e

��R2B=�0
; (F.12)
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which is Eq. (4.25).



Appendix G

Coupling of LG-mode OV with
2DEG

G.1 LG-mode OV and Coupling with 2DEG

In a main body, we discussed the photocurrent induced by the optical an-
gular momentum of the Bessel-mode optical vortex. In this appendix, we
treat our problem by Laguerre Gaussian-mode (LG-mode) OV, again. As
we reviewed in Sec. 2, since the Bessel-mode is the exact solution of the
Helmholtz equation (2.8)

�A (r) + k2A (r) = 0; (G.1)

it naturally constitutes the OV solution for the non-paraxial region. However,
it is thought that, the Bessel-mode solution is ideal one because the in�nite
energy is needed to generate a Bessel-mode photon experimentally. The one
of more realistic solutions of (2.8) is a LG-mode.
When we write the form of the monochromatic vector potential of the

LG-mode,

ALG (r; t) = ALG (r) e�i!t = "�
�i
!
u (r) eikz�i!t; (G.2)

the Helmholtz equation (2.8) is written by

�
�
u (r) eikz

�
+ k2u (r) eikz = 0; (G.3)

where we denote the Laplacian

� =
@2

@x2
+

@2

@y2
+

@2

@z2
: (G.4)
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The key point to construct the LG-mode solution is that paraxial approxi-
mation

@2u (r)

@z2
� 0 (G.5)

is applied to (G.3) before solving it. Then, (G.3) reduces to�
@2

@x2
+

@2

@y2

�
u (r) + 2ik

@F (r)

@z
� k2u (r) = 0; (G.6)

and gives the solution at z = 0 (that is, the beam waist),

up;` (r) =
Cp;j`j
w0

e
� �2

w20

�
�

w0

�j`j
Lj`jp

�
2�2

w20

�
ei`�; (G.7)

where w0 =
p
2zR=k is the beam waist with the Rayleigh length zR, ` is the z

component of the optical orbital angular momentum, Cp;j`j is a normalization
constant, and Lj`jp (x) is the associated Laguerre polynomials[4]. Therefore,
we write the vector potential of the circular-polarized LG-mode at beam
waist as

ALG
p;`;� (r) = "�

�i
!
up;` (r) e

ikz; (G.8)

with the circular polarization vector

"� = ��
1p
2
(êx + i�êy) ; (G.9)

for the helicity � = �1.
To obtain the induced photocurrent via Kubo formula (4.7), we need to

calculate the matrix element

n0;m0 ��ALG

p;`;� (r) � j
��n;m� : (G.10)

We now assume that the LG beam interacts with 2DEG at z = 0. In a
similar way of Bessel-mode case, the matrix element reduces to

n0;m0 ��ALG

p;`;� (r) � j
��n;m� � ie

~
(En0m0 � En;m)



n0;m0 ��ALG

p;`;� (r) � r
��n;m� :
(G.11)

We next calculate the matrix element by using explicitly forms of LG-
mode (G.8) and 2DEG wavefunction (3.59). Since the scalar product in the
matrix element is written as

ALG
p;`;� (r) � r =

�i
!

Cp;j`j
w0

e
� �2

w20

�
�

w0

�j`j
Lj`jp

�
2�2

w20

�
ei`�"� � r

= �
i

!

Cp;j`jp
2
e
� �2

w20

�
�

w0

�j`j+1
Lj`jp

�
2�2

w20

�
ei(`+�)�; (G.12)
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it leads to

n0;m0 ��ALG

p;`;� (r) � r
��n;m�

= �m0;m+`+��
i

!

Cp;j`jNn0m0Nnmp
2

�
1

lB

�jm0j+jmj�
1

w0

�j`j+1
�
Z
d� e

�
�

1

2l2
B

+ 1

w20

�
�2

�jm
0j+jmj+j`j+2Lj`jp

�
2�2

w20

�
L
jm0j
n0

�
�2

2l2B

�
Ljmjn

�
�2

2l2B

�
;

(G.13)

where lB is the magnetic length. By changing the variable as x = �2=2l2B, it
gives 


n0;m0 ��ALG
p;`;� (r) � r

��n;m�
= �m0;m+`+��

i

!

Cp;j`jNn0m0Nnm2
(jm0j+jmj+j`j)=2l

j`j+3
B

w
j`j+1
0

�
Z
dxe

�
�
1+

2l2B
w20

�
x
x(jm

0j+jmj+j`j+1)=2Lj`jp

�
4l2B
w20

x

�
L
jm0j
n0 (x)L

jmj
n (x) :(G.14)

We need to calculate the integral consisting of three associated Laguerre
polynomials

h
(n0;m0)
(n;m)(p;`) (x) =

Z
dxe�(1+

�
2)xx(jm

0j+jmj+j`j+1)=2Lj`jp (�x)L
jm0j
n0 (x)L

jmj
n (x) ;

(G.15)
where we put � = 4l2B=w

2
0.

When we adopt the component of the helicity basis j� = (jx � ijy) =
p
2,

the matrix elements of photocurrent are given by

h0;mjj+jn0;m+ 1i =

8><>:
�iedlB!c

p
2 for n0 = 0,m = 0

iedlB!c
p
2 for n0 = 1,m < 0

0 for otherwise

; (G.16)

h0;mjj�jn0;m� 1i = 0 for all n0;m: (G.17)

By combining (G.11) (4.7), and (G.17), the induced photocurrent for LG-
mode OV arrives at

�j
(p;`;�)
+ (!) = � 1

V

p
2e2d!2c lB

~ (! � !c) + i�

�

24
0; 1 ��ALG
p;`;� (r)�r

�� 0; 0��mmaxX
jmj=1



1;m+ 1

��ALG
p;`;� (r)�r

�� 0;m�
35 :
(G.18)
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Therefore, we �nd that we need to calculate the sum like

0; 1

��ALG
p;`;� (r) � r

�� 0; 0�� mmaxX
jmj=1



1;m+ 1

��ALG
p;`;� (r) � r

�� 0;m� : (G.19)

This summation factors are analogs of the factors F ` (4.24).

G.2 Analytic Integration

In this section, we will do the integral (G.15). This integral has been done
in G. F. Quinteiro et al.�s paper [73]. To achieve such a purpose, we need a
formula of the associated Laguerre polynomials,

Lj`jp (�x) =
1X
r=0

�
p+ j`j
p� r

�
�r (1� �)p�r Lj`jr (x) : (G.20)

When we assume 4l2B � w20, that is � � 1, it is enough to consider the
expansion of (G.20) up to the �rst order of �. Then we obtain

Lj`jp (�x) �
�
p+ j`j
p

�
(1� p�)L

j`j
0 (x) +

�
p+ j`j
p� 1

�
�L

j`j
1 (x) : (G.21)

Using Lj`j1 (x) = (1 + j`j)L
j`j
0 (x)� x and Lj`j0 (x) = 1 lead to

Lj`jp (�x) =

�
p+ j`j
p

�
�
�
p+ j`j
p� 1

�
�x: (G.22)

Then we obtain

h
(n0;m0)
(n;m)(p;`) (x)

=

�
p+ j`j
p

�Z
dxe�(1+

�
2)xx(jm

0j+jmj+j`j+1)=2L
jm0j
n0 (x)L

jmj
n (x)

�
�
p+ j`j
p� 1

�
�

Z
dxe�(1+

�
2)xx(jm

0j+jmj+j`j+3)=2L
jm0j
n0 (x)L

jmj
n (x) ;(G.23)

In a similar way of Bessel-mode case, we con�ne our discussion to the tran-
sitions between the Lowest Landau level (LLL) to the second Landau Level
(2LL). Such transitions are allowed when conditions (4.15) and (4.22) are
satis�ed.
First, we obtain h

(n0;m0)
(n;m)(p;`) (x) for the transition (0; 0; 0) ! (0; 1; 1) for

m = 0 with ` = 0 and � = 1,

h
(0;1)
(0;0)(p;0) (x) =

4

(� + 2)2
� p�

16

(� + 2)3
; (G.24)
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and with ` = 2 and � = �1,

h
(0;1)
(0;0)(p;2) (x)

= (p+ 2) (p+ 1)
8

(� + 2)3
� (p+ 2) (p+ 1) p� 16

(� + 2)4
; (G.25)

For the transition (0;m; 0)! (1;m + 1; 1) for m < 0 with ` = 0 and � = 1,
we obtain

h
(1;m+1)
(0;m)(p;0) (x) = jmj jmj!2

jmj+1

(� + 2)jmj+1
� (jmj p� + 1) (jmj+ 1)!2

jmj+2

(� + 2)jmj+2

+p�
(jmj+ 2)!2jmj+3

(� + 2)jmj+3
; (G.26)

and for its transition with ` = 2 and � = �1,

h
(1;m+1)
(0;m)(p;2) (x) = jmj (p+ 2) (p+ 1)

2

(jmj+ 1)!2jmj+2

(� + 2)jmj+2

�(p+ 2) (p+ 1)
2

�
1 +

jmj p�
3

�
(jmj+ 2)!2jmj+3

(� + 2)jmj+3
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: (G.27)

Next, after calculating the state sum (G.19), we obtain it for ` = 0 and
� = 1 as 
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(G.28)

and for ` = 2 and � = �1 as
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�
: (G.29)
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We thus �nd that the intermediate states are canceled out and only the edge
state survives.
When � � 1 and mmax � 1, the expressions (G.28) and (G.29) can

reduce to
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and
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respectively. We thus obtain the induced photocurrent

�j
(p;0;1)
+ (!) =
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~ (! � !c) + i�
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(G.32)
and
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We factorize (G.32) and (G.33) as done in (4.23):

�j
(p;`;�)
+ (!) =

�i
~ (! � !c) + i�

F
(p;`;�)
LG (B) : (G.34)

For examples, when p = 0, we obtain

F
(0;0;1)
LG (B) =

p
2C0;0e

4R2d

2V !w0m2
e

B2

�
1� R2
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�
; (G.35)

and

F
(0;2;�1)
LG (B) =

�C0;2e4R4dp
2V !w30m

2
e

B2

�
1� R2

w20

�
: (G.36)
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where we used that the maximum of electron angular momentum is given by

mmax '
R2

2l2B
: (G.37)

When p = 1, we obtain

F
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p
2C1;0e
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e
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1� 3R
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and
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When p = 2, we obtain

F
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and

F
(2;2;�1)
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�
p
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4R4d

V !w30m
2
e
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�
3� 7R

2

w20

�
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Thus, we are ready to discuss the magnetic �eld dependence of the induced
currents.

G.3 B-dependence of the Induced Photocur-
rent

In a similar way of Bessel-mode case discussed in main body, we investigate
the magnetic �eld dependence of induced photocurrent by LG-mode OV. The
beam waist is de�ned by

w0 =

r
2zR
k
: (G.42)

In fact, the Rayleigh length depends on the wavelength. Since the parameter
independent of the wavelength is the numerical aperture NA, the beam waist
is rewritten by using the numerical aperture NA as

w0 =
�

�NA
=

2

kNA
; (G.43)

and the Rayleigh length is also

zR =
�w20
�

=
�

�NA2
=

2

kNA2
: (G.44)
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We thus see the beamwaist varies by controlling the wavelength � or wavenum-
ber k.
Now we assume the cyclotron resonance (transition between the LLL and

2LL). Then the wavenumber to induce the cyclotron resonance is related to
cyclotron frequency !c as

kc =
!c
c
=

eB

mec
: (G.45)

The wavenumber thus depends on the external magnetic �eld B. Therefore,
the beam waist also depends on B as

w0 (B) =
2mec

eB NA
: (G.46)

The physical part of B dependence of the photocurrent �j(p;`;�)+ (!;B) for
LG-mode OV with p = 0, ` = 0, � = 1, and ! = !c, is written as

F
(0;0;1)
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p
2C0;0e

4R2d NA
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2
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�
; (G.47)

and for that with p = 0, ` = 2, � = �1, and ! = !c,
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�
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0 B4
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1�R2 NA2
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4m2
ec
2
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�
; (G.48)

where we introduced the factor F (p;`;�)0 . The zero point of (G.47) and (G.48)
are given by B � 0:559 T.
We here need to pay attention to the derivation of the vanishing points

except for B = 0 in the amplitudes (G.47) and (G.48). The pro�le of LG-
mode for ` = 0, p = 0 (which is equivalent to a normal Gaussian beam)
and that for ` = 2, p = 0 (which has just one bright ring) have no zero
point except for the optical axis. This means that the amplitudes F (0;0;1)LG (B)

and F
(0;2;�1)
LG (B) essentially have no vanishing point in B > 0. In fact,

the vanishing points of (G.47) and (G.48) in B > 0 is derived from the
factor 1= (� + 2)mmax+3 � 0, which is equivalent to the limit � !1, that is,
the in�nite magnitude of B. Therefore, we should notice that, to see more
accurate behavior of the amplitudes, the higher orders of the expansion of
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1= (� + 2)mmax+3 with respect to � are needed. However, the vanishing points
of (G.47) and (G.48) approximately indicate where the pro�les of LG-mode
for p = 0 are su¢ ciently weak far from the optical axis. Therefore, it must
be noted that the physical meaningful region of the amplitudes, (G.47) and
(G.48) is in B < 5 T. We then demonstrate the numerical results of the
normalized photocurrent for p = 0 in the region B < 5 T in Fig. G.1. We
here used the rest mass of electron me = 9:11� 10�31 kg, elementary charge
e = 1:60� 10�19 C, light speed c = 3:00� 108 m/s, and numerical aperture
NA = 0:61.

Figure G.1: B-dependence of the amplitude of F (p;`;�)LG (B) for p = 0. We
used the rest mass of electron me = 9:11 � 10�31 kg, elementary charge
e = 1:60� 10�19 C, light speed c = 3:00� 108 m/s, and numerical aperture
NA = 0:61. The wavenumber and beam waist also have B-dependence as
kc � 5:85� 102B m�1 and w0 � 5:60� 10�3B�1 m, respectively.

On the other hand, the expansion with respect to � for the amplitudes
except for p = 0 is worth to see that the �rst vanishing point resulted from
the coincidence of the dark rings of LG-mode pro�le with the electron system
edge, and that how much magnitude the amplitudes in the region between
0T and the �rst zero point is. As is the case with p = 0, the physical part of
B-dependence of the induced photocurrent �j(p;`;�)+ (!;B) for LG-mode OV
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with p = 1, ` = 0, � = 1, and ! = !c, is given as
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which gives the zero point at B = 0:322 T. The physical part of B dependence
of the induced photocurrent with p = 1, ` = 2, � = �1, and ! = !c, is also
given as
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which gives the zero point at B = 0:433 T. We then demonstrate these
numerical results of the normalized photocurrent for p = 1 in the region
B < 4:5 T in Fig. G.2.
Furthermore, the physical part of B dependence of the induced photocur-

rent �j(p;`;�)+ (!;B) for LG-mode OV with p = 2, ` = 0, � = 1, and ! = !c, is
obtained as
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which gives the zero point at B = 0:250 T. For that with p = 2, ` = 2,
� = �1, and ! = !c, we obtain

F
(2;2;�1)
LG (B) = �

p
2C2;2e

6R4d NA3

8V w30m
4
ec
3~

B4

�
3� 7

4
R2 NA2

e2

m2
ec
2
B2

�
= F

(2;2;�1)
0 B4

�
3� 7

4
R2 NA2

e2

m2
ec
2
B2

�
; (G.52)

which gives the zero point at B = 0:366 T. We then demonstrate these
numerical results of the normalized photocurrent for p = 2 in the region
B < 4:5 T in Fig. G.3.
From Figs. G.2 - G.3, we �nd that, for each p, the �rst vanishing point of

` = 0 is smaller than that of ` = 2. This tendency can be seen in Bessel-mode
case as shown in 4.6.
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Figure G.2: B-dependence of the amplitude of F (p;`;�)LG (B) for p = 1. We
used the rest mass of electron me = 9:11 � 10�31 kg, elementary charge
e = 1:60� 10�19 C, light speed c = 3:00� 108 m/s, and numerical aperture
NA = 0:61. The wavenumber and beam waist also have B-dependence as
kc � 5:85� 102B m�1 and w0 � 5:60� 10�3B�1 m, respectively.
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Figure G.3: B-dependence of the amplitude of F (p;`;�)LG (B) for p = 2. We
used the rest mass of electron me = 9:11 � 10�31 kg, elementary charge
e = 1:60� 10�19 C, light speed c = 3:00� 108 m/s, and numerical aperture
NA = 0:61. The wavenumber and beam waist also have B-dependence as
kc � 5:85� 102B m�1 and w0 � 5:60� 10�3B�1 m, respectively.



Appendix H

Multipolar Transitions by OV

H.1 Multipolar Transition Hamiltonian

We now generalize our theory discussed within an electric dipole transition to
within multipolar transitions. In the main body, we have worked in the cylin-
drical coordinates, which manifest the symmetry of the optical vortex (OV).
However, our �nal results, of course, are not speci�c to a particular coordinate
system. We can alternatively consider the spherical coordinates and examine
the multipole expansion by the vector spherical harmonics (VSH)[74, 75] of
current operators in Eq. (4.7). We will then obtain the general expression of
the interaction Hamiltonian by using VSH. We will also show that the selec-
tion rules for the dipole transitions are consistent with the results obtained
without multipole expansion in Eq. (4.22).
First, we give the de�nition of the VSH as the followings,

Y`m (�; �) = Y`m (�; �) êr;

	`m (�; �) = rrY`m (�; �) ; (H.1)

�`m (�; �) = r�rY`m (�; �) ;

with a spherical harmonics

Y`m (�; �) = (�1)m
s
2`+ 1

4�

(`�m)!

(`+m)!
Pm` (cos �) e

im�; (H.2)

where Pm` (cos �) is an associated Legendre polynomial. We here introduce
spherical coordinates (r; �; �) taken as Fig. 4.1. Then the current can gener-

123
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ally be expanded by VSH as

j (r) =

1X
`=0

X̀
m=�`

h
j
(r)
`m (r)Y`m (�; �) + j

(1)
`m (r)	`m (�; �)

+ j
(2)
`m (r)�`m (�; �)

i
; (H.3)

where we introduced the multipole coe¢ cients j(r)`m (r), j
(1)
`m (r), and j

(2)
`m (r),

which are de�ned by[74]

j
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; (H.4)

j
(2)
lm (r) =

1

l (l + 1)

Z
j (r) ��lm (�; �)

� d
;

where 
 is a solid angle.
Next, the vector potential of OV can also be expressed in terms of the

spherical coordinates,

AOV
`;� (r) = ��

r
k?
2�

1X
`0=�1

i`
0��J` (k?r sin �) J`0(kzr)e

i`�ei`
0�; (H.5)

where the polarization vector is expressed in the spherical coordinates,

�� = ��
sin �p
2
ei��êr � �

cos �p
2
ei��ê� �

ip
2
ei��ê� for � = �1: (H.6)

and we applied Jacobi-Anger expansion (a plane wave expansion)

eikzr cos � =

1X
`=�1

i`J`(kzr)e
i`�: (H.7)

We consider the interaction of the current with the OV as a minimal coupling.
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The Hamiltonian is given by
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: (H.8)

We here note that the angular momentum conservation �m00;�(`+�) is provided
by integral with respect to the azimuthal angle �. This expression is impor-
tant to obtain the selection rules via symmetry information of currents in
matter.

H.2 Consistency with our results

By applying the expression (H.8) to our model, we will show the consistency
with our results. Before this, we try to obtain the general expressions for the
dipole transitions, that is, we consider the dipole component of j (r), which
carries the azimuthal quantum number `00 = 1 in Eq. (H.8).
The radial pro�le of optical vortex is described by the Bessel function,

which depends on the polar angle � as shown in Eq. (H.5). To perform the
integral with respect to �, we now assume that the current interacts with
OV near the optical axis, that is, k?r sin � � 1. Then we can approximate
the Bessel function as J` (k?r sin �) � (k?r sin �=2)` =`!. In addition, we note
J�` (k?r sin �) = (�1)` J` (k?r sin �). After some calculations, we then arrive
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at six types of allowed transitions,
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where we denoted the combinations of the multipole coe¢ cients as

P`m (r) = j
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and the integer factors as

N1 (n) = (2n� 1) (2n+ 3) ;
N2 (n) = (2n� 3) (2n� 1) (2n+ 1) (2n+ 3) ;
N3 (n) = (2n� 3) (2n� 1) (2n+ 3) (2n+ 5) ;
N4 (n) = (2n� 5) (2n� 3) (2n� 1) (2n+ 1) (2n+ 3) (2n+ 5) : (H.16)

We summarize the allowed absorptions as the followings,

(J; `; �) =

8>>>>>><>>>>>>:

(1; 0; 1)
(1; 2;�1)
(0;�1; 1)
(0; 1;�1)
(�1;�2; 1)
(�1; 0;�1)

: (H.17)

In other words, the absorptions in the dipole transition are allowed in case
of the optical TAM, J = 1, 0, and �1.
Finally, to apply our model, we need to impose further conditions to

the current j (r). The �rst is that we have considered the current which
increases z-component of the electron angular momentum by one, j+ =
(jx � ijy) =

p
2 / e�i�. The reason is because such a current is described

by + component of the chiral basis (see Appendix B). The second is that
the 2DEG have distributed on the surface � = �=2. Thus, we can guess the
form of the current distribution of j+ as

j (r) = j� (r) � (cos �) e
�i�ê�: (H.18)
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Then, by using Eq. (H.4), we obtain the multipole coe¢ cients as

j
(r)
`m (r) = 0; (H.19)
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` (`+ 1)

s
2`+ 1

4�

(`�m)!

(`+m)!
j� (r)

�
Z 1

�1

@Pm` (cos �)

@�
� (cos �) d (cos �)

Z 2�

0

e�i(m+1)�d�

= 2�

s
2`+ 1

4�` (`+ 1)
j� (r)

d

d�
P�1` (cos �) j�=�=2�m;�1: (H.21)

In particular, when we con�ne the case of the dipole transition ` = 1 , we
obtain

J
(r)
1;�1 (r) = 0;

J
(1)
1;�1 (r) = i

r
3�

8
j� (r) ;

J
(2)
1:�1 (r) = 0; (H.22)

which give the two types of allowed transitions from the Hamiltonian (H.9)-
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(H.14) as

Hdip
int(l=0;�=1) =

p
�k?

Z
r2j� (r) J0(kzr)dr

�6
p
�k?

1X
n=1

(�1)n (2n2�3)
N3 (n)

Z
r2j� (r) J2n(kzr)dr; (H.23)

Hdip
int(l=2;�=�1) = �

p
�k5?
20

Z
r4j� (r) J0(kzr)dr

+
45

2

q
�k5?

1X
n=1

(�1)n

N4 (n)

Z
r4j� (r) J2n(kzr)dr; (H.24)

Hdip
int(l=�2;�=1) = Hdip

int(l=�1;�=1) = Hdip
int(l=0;�=�1) = Hdip

int(l=1;�=�1) = 0; (H.25)

which leads to Eq. (4.22) by seeing the non-zero Hamiltonians, that is,

(J; `; �) =

�
(1; 0; 1)
(1; 2;�1) : (H.26)

Therefore, we proved the consistency with the results without VSH.
In this Appendix, since we have obtained the general expression of the

multipolar expanded Hamiltonian of the interaction with optical vertex, we
can generalize the spectroscopic selection rules beyond the dipole transition.
This is our future work.



Appendix I

Vector Spherical Harmonics

We brie�y summarize the de�nition and the properties of the vector spherical
harmonics (VSH).

De�nition

We here use the de�nition by Barrera et al.[74],

Y `m (�; �) = Y`m (�; �) êr;

	`m (�; �) = rrY`m (�; �) ; (I.1)

�`m (�; �) = r �rY`m (�; �) ;

with r = rêr.

Symmetric Property

Symmetric property of VSH with respect to m is given by

Y `;�m (�; �) = (�1)m Y �
`m (�; �) ;

	`;�m (�; �) = (�1)m	�
`m (�; �) ; (I.2)

�`;�m (�; �) = (�1)m��`m (�; �) :

Orthogonality

VSH are orthogonal each other,

Y `m (�; �) �	`m (�; �) = 0;

Y `m (�; �) ��`m (�; �) = 0; (I.3)

	`m (�; �) ��`m (�; �) = 0;
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in addition,

Y `m (�; �) �	`0m0 (�; �) = 0;

Y `m (�; �) ��`0m0 (�; �) = 0: (I.4)

We also give the orthogonality in Hilbert space as the followings,Z
Y �
`0m0 (�; �) � Y `m (�; �) d
 = �``0�mm0 ;Z

	�
`0m0 (�; �) �	`m (�; �) d
 = ` (`+ 1) �``0�mm0 ;Z
��`0m0 (�; �) ��`m (�; �) d
 = ` (`+ 1) �``0�mm0 ;Z
Y �
`0m0 (�; �) �	`m (�; �) d
 = 0;Z

Y �
`0m0 (�; �) ��`m (�; �) d
 = 0;Z

	�
`0m0 (�; �) ��`m (�; �) d
 = 0: (I.5)

Divergence of VSH

By introducing the arbitrary radial function f (r), the divergences of VSH
are given by

r � (f (r)Y `m (�; �)) =

�
df (r)

dr
+
2

r
f (r)

�
Y`m (�; �) ;

r � (f (r)	`m (�; �)) = �
` (`+ 1)

r
f (r)Y`m (�; �) ; (I.6)

r � (f (r)�`m (�; �)) = 0:

Rotation of VSH

Similarly to the divergence, the rotations of VSH are given by

r� (f (r)Y `m (�; �)) = �
f (r)

r
�`m (�; �) ;

r� (f (r)	`m (�; �)) =

�
df (r)

dr
+
f (r)

r

�
�`m (�; �) ; (I.7)

r� (f (r)�`m (�; �)) =

�` (`+ 1)
r

f (r)Y `m (�; �)�
�
df (r)

dr
+
f (r)

r

�
	`m (�; �) :
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Laplacian of VSH

Because the gradient of the (scalar) spherical harmonics Y`m (�; �) leads to

r (f (r)Y`m (�; �)) =

�
df (r)

dr

�
Y `m (�; �) +

f (r)

r
	`m (�; �) ; (I.8)

the Laplacian of the scalar spherical harmonics is expressed as

�(f (r)Y`m (�; �)) =

�
1

r

d2

dr2
(rf (r))� ` (`+ 1)

r2
f (r)

�
Y`m (�; �) : (I.9)

By using this, when we collectively denote all three types of VSH as Z`m, we
can see that the Laplacian of VSH is as follows,

�(f (r)Z`m (�; �)) =

�
1

r2
@

@r

�
r2
@f (r)

@r

��
Z`m (�; �) + f (r)�Z`m (�; �) :

(I.10)
In particular, the explicit expressions of �Z lm are as follows,

�Y `m (�; �) = �
1

r2
f2 + ` (`+ 1)gY `m (�; �) +

2

r2
	`m (�; �) ;

�	`m (�; �) =
2

r2
` (`+ 1)Y `m (�; �)�

1

r2
` (`+ 1)	`m (�; �) ; (I.11)

��`m (�; �) = �
1

r2
` (`+ 1)�`m (�; �) :
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