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Abstract

This dissertation summarizes the research results on the solution of Fermat type
functional equations, (∗) fn

1 + fn
2 + · · · + fn

k = 1 where n and k are positive
integers, see [17], [10]. Our focus is on equations of the form (∗) where it is not
known whether there exist non-constant solutions in one or more of the following
four classes of functions: meromorphic functions, rational functions, entire func-
tions, polynomials.
To explain the contents, in Chapter 2, we summarize the mathematical tools used

in this dissertation. It also includes properties for rational functions.
In Chapter 3, the Fermat type functional equations (∗∗) fn + gn + hn = 1 are

considered in the complex plane. Alternative proofs for the known results for en-
tire and meromorphic solutions to (∗∗) are given. Moreover, some conditions on
degrees of polynomial solutions are given.
In Chapter 4, the Fermat type functional equations (∗) are considered in the

complex plane. For such equations, we obtain estimates on Nevanlinna functions
that transcendental solutions of (∗) would have to satisfy, as well as analogous
estimates for non-constant rational solutions. As an application, it is shown that
transcendental entire solutions of (∗) when n = k(k− 1) with k ≥ 3, would have
to satisfy a certain differential equation, which is a generalization of the known
result when k = 3. Alternative proofs for the known non-existence theorems for
entire and polynomial solutions of (∗) are given. Moreover, some restrictions on
degrees of polynomial solutions are discussed.
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Preface

Human beings may be said to have lived with numbers. Replacing objects with
the concept of numbers and counting is thought to have led to natural numbers,
and the concept of numbers has expanded over time. Simultaneously, of course,
the concept of numbers in problems has been broadened. The problem of Fermat
type functional equations, which is the subject of this dissertation, can be consid-
ered as a problem involving such properties.
The problem we are working on in this dissertation is whether there exist mero-

morphic and entire functions f1, f2, . . . , fk which satisfy the Fermat type func-
tional equation

fn
1 + fn

2 + · · ·+ fn
k = 1

where n ≥ k ≥ 2 are integers, see e.g. [9], [13].
Here, we would like to explain a little about the historical background related to

this issue. Looking at the problem from the perspective of expanding the concept
of numbers, as the name Fermat type functional equations suggest, the starting
point of the problem is Fermat’s Last Theorem of the famous French Pierre de
Fermat. He wrote in the margin of the book Arithmetica by the ancient Greek
mathematician Diophantus in the 1630s, ”Equation xn + yn = zn xyz ̸= 0 and
n > 2. There is no set of natural numbers (x, y, z) that satisfies this equation. I
have discovered a truly marvelous demonstration, which this margin is too narrow
to contain.” is later known as Fermat’s Last Theorem. Fermat’s Last Theorem has
long been considered by mathematicians and math enthusiasts because of its ease
of understanding, but it has been regarded as an unsolvable problem. This was
fully proved by Andrew John Wiles of the United Kingdom in 1995. It has been
330 years since Fermat died.
The genealogy of Fermat’s Problem is that in 1770, Edward Waring of the United

Kingdom proposed Waring’s problem, ”Given a positive integer k, does the equa-
tion n = xk1+x

k
2+ · · ·+xks hold for every integer n, where s depends on k but not

on n? If so, what is the smallest value of s for a given k?”Waring’s problem was
positively proved by David Hilbert of Germany in 1909. Waring’s problem with
polynomial was also treated as similar to classical Waring’s problem, see e.g. [20].
Also, in Gross’s paper in 1966 [4], we can see the extension of the function of the
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4

solution to the Waring’s problem to meromorphic functions solution.
In 1985 and 2014, Hayman of the United Kingdom published the paper that ar-
ranged the format of the problem so far. Among them, Fermat type functional
equations are mentioned, see e.g. [9], [13], [14].
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Chapter 1

Introduction

Fermat’s Last Theorem: For natural numbers n of 3 or more, there is no set of
natural numbers (x, y, z) such that xn+ yn = zn. Despite the challenges of many,
Fermat’s Last Theorem could not be solved for a very long time, but was finally
proved by Andrew John Wiles in 1995. The problem of the Fermat type func-
tional equation, which is the problem in this dissertation, has a shape very similar
to Fermat’s Last Theorem. However, the difference is that the number of terms
and the types of functions considered as solutions are widespread. What’s more,
this is the most important point, but it’s also different in that there are still open
questions left.
The Fermat type functional equation is described below. (∗) fn

1 +f
n
2 +· · ·+fn

k =
1, where n and k are positive integers. Our focus is on equations of the form (∗)
where it is not known whether there exist non-constant solutions in one or more
of the following four classes of functions: meromorphic functions, rational func-
tions, entire functions, polynomials.
This dissertation summarizes the results of our research on the solutions of such

Fermat type functional equation. Specifically, this dissertation is integrated by
adding the necessary items with the main contents of the papers [17] and [10]
submitted and published in ”Computational Methods and Function Theory” and
”Proceedings of the Edinburgh Mathematical Society”. The topics in each chapter
are explained below. In Chapter 2, we provide basic knowledge about the range
of complex functions used in this dissertation, Nevanlinna theory and Wronskian.
It also defines unique notations and properties for rational functions. In Chapter
3, the Fermat type functional equations (∗∗) fn + gn + hn = 1 are considered
in the complex plane. Alternative proofs for the known results for entire and
meromorphic solutions to (∗∗) are given in Corollary 3.4 and Corollary 3.2, re-
spectively. Moreover, some conditions on degrees of polynomial solutions are
given in Proposition 3.1.

In Chapter 4, the Fermat type functional equations (∗) are considered in the
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Chapter 1 Introduction 7

complex plane. For such equations, we obtain estimates on Nevanlinna func-
tions that transcendental solutions of (∗) would have to satisfy in Theorem 4.2, as
well as analogous estimates for non-constant rational solutions in Theorem 4.1.
As an application, it is shown that transcendental entire solutions of (∗) when
n = k(k − 1) with k ≥ 3, would have to satisfy a certain differential equa-
tion in Corollary 4.1, which is a generalization of the known result when k = 3.
Alternative proofs for the known non-existence theorems for entire and polyno-
mial solutions of (∗) are given in Corollary 4.1 and Corollary 4.2, respectively.
Moreover, some restrictions on degrees of polynomial solutions are discussed in
Lemma 4.3 and Proposition 4.1. We give an example of the case k = 3, n = 3
and deg f = deg g = deg h = 3 of polynomial solutions of (*).



Chapter 2

Preliminaries

In preparation for reading this dissertation, we explain an overview of the rele-
vant parts of complex functions, Nevalinna theory, Wronskian and properties for
rational functions. In summarizing this section, we referred to references [1], [26]
for complex functions, references [12], [21], [23] for Nevanlinna theory and ref-
erence [21] for Wronskian. For more details, check the references.

2.1 Complex Functions

Analytic Functions
If the derivative f ′(z) exists at all points z of a domain D, then f(z) is said to be

analytic in D and is referred to as an analytic function in D or a function analytic
in D. The terms regular and holomorphic are sometimes used as synonyms for
analytic.
A function f(z) is said to be analytic at a point z0 if there exists a neighborhood

|z − z0| < δ, at all points of which f ′(z) exists.

Laurent Series
Suppose that f(z) is single-valued and analytic in the ring-shaped region E =

{r1 < |z−a| < r2}. Let C be an arbitrary circle inE centred at a. We can expand

8



Chapter 2 Preliminaries 9

f(z) as

f(z) = a0 + a1(z − a) + a2(z − a)2 + · · ·+ a−1

z − a
+

a−2

(z − a)2
+ · · ·

=
∞∑
n=0

an(z − a)n +
∞∑
n=1

a−n

(z − a)n
=

∞∑
n=−∞

an(z − a)n,

where

an =
1

2πi

∮
C

f(ζ)

(ζ − a)n+1
dζ n = 0,±1,±2, · · · .

Pole and Zero
A point at which f(z) fails to be analytic is called a singular point or singularity

of f(z). Various types of singularities exist.
Isolated Singularities. The point z = z0 is called an isolated singularity or iso-
lated singular point of f(z), if we can find δ > 0 such that the circle |z − z0| = δ
encloses no singular point other than z0 (i.e. there exists a deleted δ neighbor-
hood of z0 containing no singularity). If no such δ can be found, we call z0 a
non-isolated singularity.
If z0 is not a singular point and we can find δ > 0 such that |z− z0| = δ encloses

no singular point, then we call z0 an ordinary point of f(z).
Pole. If z0 is an isolated singularity and we can find a positive integer n such that
limz→z0(z − z0)

nf(z) = A ̸= 0, then z = z0 is called a pole of order n. If n = 1,
z0 is called a simple pole.
Zero. If g(z) = (z − z0)

nf(z), where f(z0) ̸= 0 and n is a positive integer, then
z = z0 is called a zero of order n of g(z). If n = 1, z0 is called a simple zero. In
such a case, z0 is a pole of order n of the function 1/g(z).

Polynomials
Polynomials are defined by

P (z) = a0z
n + a1z

n−1 + · · ·+ an−1z + an

where a0 ̸= 0, a1, · · · , an, are complex constants and n is a positive integer called
the degree of the polynomial P (z).
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Rational Functions
Rational functions are defined by

w =
P (z)

Q(z)

where P (z) and Q(z) are polynomials. This function is analytical except for the
point Q(z) = 0. Here, it is assumed that the common factor of P (z) and Q(z) has
already been eliminated.

Entire Functions
A function that is analytic everywhere in the finite plane (i.e. everywhere except at
∞) is called an entire function. The functions ez, sin z, cos z are entire functions
for example.

Meromorphic Functions
A function that is analytic everywhere in the finite plane except at a finite number
of poles is called a meromorphic function. For example, z/((z−1)(z+3)2), which
is analytic everywhere in the finite plane except at the poles z = 1 ( simple pole
) and z = −3 ( pole of order 2 ), is a meromorphic function, and Γ function is
analytic except at the poles 0,−1,−2, · · · .

In this dissertation, ‘meromorphic’ means meromorphic in the whole com-
plex plan C, and we consider meromorphic functions by dividing them into flow-
ing four sets, depending on whether there is a pole or not, and whether it is tran-
scendental.

M : Set of transcendental meromorphic functions having at least one pole
R: Set of rational functions having at least one pole
E: Set of transcendental entire functions
P : Set of polynomials

2.2 Nevanlinna Theory
In this dissertation, we use standard notations in the Nevanlinna theory. There-

fore, the related items are summarized below, see e.g. [12], [21], [23].
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Definition 2.1 (Unintegrated counting function)
Let f be a meromorphic function, not being identically equal to a ∈ C. Let
i(z, a, f) denote the multiplicity of an a-point of f at z. Then we define

n(r, a, f) = n

(
r,

1

f − a

)
= n(r, a) =

∑
|z|≤r
f(z)=a

i(z, a, f),

i.e. n(r, a, f) counts the number of the roots of f(z) = a in |z| ≤ r, each root
according to its multiplicity. For the poles of f , we define similarly

n(r,∞, f) = n(r, f) = n(r,∞) =
∑
|z|≤r

f(z)=∞

i(z,∞, f).

Another method of counting the number of poles is to count all the multiplicities
as 1, or to count only the poles having an order of 2 or more. The number of such
counting methods is as follows

n(r,∞, f) = n(r, f) = n(r,∞) =
∑
|z|≤r

f(z)=∞

1,

n1(r,∞, f) = n1(r, f) = n1(r,∞),

= n(r, f)− n(r, f) =
∑
|z|≤r

f(z)=∞

(
i(z,∞, f)− 1

)
.

Definition 2.2 (Counting function)
For a meromorphic function f , we define

N(r, a, f) = N

(
r,

1

f − a

)
=

∫ r

0

n(t, a, f)− n(0, a, f)

t
dt+ n(0, a, f) log r

supposing f ̸≡ a ∈ C, and

N(r, f) =

∫ r

0

n(t, f)− n(0, f)

t
dt+ n(0, f) log r.

Further, corresponding to other methods of counting poles

N(r, f) =

∫ r

0

n(t, f)− n(0, f)

t
dt+ n(0, f) log r,

N1(r, f) =

∫ r

0

n1(t, f)− n1(0, f)

t
dt+ n1(0, f) log r

and
N1(r, f) = N(r, f)−N(r, f).
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Definition 2.3 (Proximity function)
For any real number α > 0, we define

log+ α = max{logα, 0}.

For a meromorphic function f , we define

m(r, a, f) = m

(
r,

1

f − a

)
=

1

2π

∫ 2π

0

log+
∣∣∣∣ 1

f(reiθ)− a

∣∣∣∣ dθ
supposing f(z) ̸≡ a ∈ C, and

m(r, f) =
1

2π

∫ 2π

0

log+ |f(reiθ)| dθ.

Definition 2.4 (Characteristic function)
The characteristic function of a meromorphic function f is defined as

T (r, f) = m(r, f) +N(r, f).

The order σ(f) of growth of a meromorphic function f is defined by

σ(f) = lim sup
r→∞

log T (r, f)

log r
.

By definitions, we may write

m(r, a, f) +N(r, a, f) = T

(
r,

1

f − a

)
.

Theorem 2.1 (The first main theorem of Nevanlinna)
Let f be a transcendental meromorphic function and let a ∈ C. Then

T (r, f) = T

(
r,

1

f − a

)
+O(1), as r → ∞.

Let f be a transcendental meromorphic function, we denote by S(r, f) any
quantity that satisfies S(r, f) = o(T (r, f)) as r → ∞, possibly outside a set of r
of finite linear measure. When a meromorphic function a(z) satisfies T (r, a) =
S(r, f), a(z) is said to be a small function with respect to f(z).
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Lemma 2.1 Let f be a transcendental meromorphic function. Then

m

(
r,
f ′

f

)
= S(r, f)

and if f is of finite order of growth, then

m

(
r,
f ′

f

)
= O(log r).

Theorem 2.2 (The second main theorem of Nevanlinna)
Let f be a transcendental meromorphic function, let q ≥ 2 and let a1, . . . , aq ∈ C
be distinct complex numbers. Then

m(r, f) +

q∑
j=1

m

(
r,

1

f − aj

)
+N1(r, f) +N

(
r,

1

f ′

)
≤ 2T (r, f) + S(r, f).

Proposition 2.1 Let f, f1, · · · , fn be meromorphic functions and α, β, γ, δ ∈ C
such that αδ − βγ ̸= 0 . Then

(a) T (r, f1 · · · fn) ≤
∑n

i=1 T (r, fi) for r ≥ 1,

(b) T (r, fn) = nT (r, f), n ∈ N,

(c) T (r,
∑n

i=1 fi) ≤
∑n

i=1 T (r, fi) + log n for r ≥ 1,

(d) T
(
r,
αf + β

γf + δ

)
= T (r, f) +O(1),

assuming f(z) ̸≡ −δ/γ.

2.3 Wronskian
Definition 2.5 (Wronskian)
The Wronskian W (f1, f2, · · · , fn) of the meromorphic functions f1, f2, · · · , fn

is given by

W (f1, f2, . . . , fn) =

∣∣∣∣∣∣∣∣∣
f1 f2 . . . fn
f ′
1 f ′

2 . . . f ′
n

...
... . . . ...

f
(n−1)
1 f

(n−1)
2 . . . f

(n−1)
n

∣∣∣∣∣∣∣∣∣ .
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Moreover, we denote, for ν = 0, · · · , n− 1, by

Wν(f1, f2, · · · , fn)

the determinant which comes fromW (f1, f2, · · · , fn) by replacing the row (f
(ν)
1 , f

(ν)
2 , · · · , f (ν)

n )

by (f
(n)
1 , f

(n)
2 , · · · , f (n)

n ).

Proposition 2.2 Let f1, f2, · · · , fn be meromorphic functions. ThenW (f1, f2, · · · , fn)
vanishes identically if and only if f1, f2, · · · , fn are linearly dependent over C.

Proposition 2.3 Let f1, f2, · · · , fn be meromorphic functions and c1, c2, · · · , cn
be complex numbers. Then

(a) W (c1f1, c2f2, · · · , cnfn) = c1c2 · · · cnW (f1, f2, · · · , fn).

(b) W
(
1, z, · · · , zn−1

(n− 1)!
, g

)
= g(n).

(c) W (f1, f2, · · · , fn, 1) = (−1)nW (f ′
1, f

′
2, · · · , f ′

n).

(d) W (gf1, gf2, · · · , gfn) = gnW (f1, f2, · · · , fn).

(e) W (f1, f2, · · · , fn) = fn
1W

((
f2
f1

)′

, · · · ,
(
fn
f1

)′)
.

2.4 Properties for Rational Functions
We prepare some notations for rational functions, and give a lemma in the remain-
ing part of this chapter. Let R be a rational function. Let n(R) denote the number
poles ofR in C, where each pole is counted the same number of times as its multi-
plicity. Write R = RN/RD, where RN and RD are relatively prime polynomials.
Obviously, we have n(R) = degRD. Define

m(R) = max(degRN − degRD, 0). (2.1)

Using n(R) = degRD, we see that

degR = m(R) + n(R) (2.2)

and for any a ∈ C

degR = deg

(
1

R− a

)
= m

(
1

R− a

)
+ n

(
1

R− a

)
. (2.3)

Concerning the properties of m(R), we mention the following lemma.
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Lemma 2.2 Let P be a polynomial, and let R and Q be rational functions. Then

(i) For any non-negative integers j > k, either degP ≤ k or it holds

m

(
P (j)

P (k)

)
= 0. (2.4)

(ii) We have

m(RQ) ≤ m(R)+m(Q) and m(R+Q) ≤ max (m(R), m(Q)) . (2.5)

Proof of Lemma 2.2 (i) Since degP (j) < degP (k) when degP > k, by
definition we obtain (2.4).

(ii) We write R = RN/RD with relatively prime polynomials RN and RD,
and Q = QN/QD with relatively prime polynomials QN and QD. We have

m(RQ) = m

(
RNQN

RDQD

)
= max ((degRN + degQN)− (degRD + degQD), 0)

≤ max(degRN − degRD, 0) + max(degQN − degQD, 0)

= m(R) +m(Q),

which shows the first inequality in (2.5). For the second inequality in (2.5), we
estimate

m(R +Q) = m

(
RNQD +RDQN

RDQD

)
≤ max

(
max(degRN + degQD, degRD + degQN)− (degRD + degQD), 0

)
≤ max

(
max(degRN − degRD, 0), max(degQN − degQD, 0)

)
= max(m(R), m(Q)).

We have thus proved Lemma 2.2. □

Remark 2.1 Let R be a rational function. We have m(Rn) = nm(R) for all
n ∈ N and m(cR) = m(R) for all c ∈ C\{0}. These properties will be used in
the proofs of Theorem 3.2 and Corollary 3.3 in Chapter 3 below.



Chapter 3

Case fn + gn + hn = 1

3.1 Background of Case fn + gn + hn = 1

In Chapter 3, we are concerned with the problem whether there exist non-constant
entire and meromorphic functions f , g and h which satisfy the Fermat type func-
tional equation

fn + gn + hn = 1, (3.1)

where n ≥ 2 is an integer.
It has been determined for which positive integers n, the functional equation
fn + gn = 1 has non-constant entire and meromorphic solutions f and g, see
e.g. [2], [3], [7], [9], [14]. Hence, we assume in (3.1) that fn, gn and hn are lin-
early independent, otherwise (3.1) reduces to fn + gn = 1.
We know that there exist solutions of non-constant rational functions to (3.1)

when n ≤ 5, and know that there do not exist non-constant rational functions sat-
isfying (3.1) when n ≥ 8.

For the cases n ≤ 3, we know that there exist non-constant polynomial solutions
to (3.1), and there do not exist non-constant polynomial solutions to (3.1) when
n ≥ 6.
To our best knowledge, the cases n = 7 and 6 for solutions of non-constant ra-

tional functions, and the cases n = 5 and 4 for non-constant polynomial solutions
are still open, see e.g. [8], [9], [19].

Example 3.1 We recall examples for n = 4 and n = 5. Let a(z) ̸≡ 0 be a
meromorphic function, where ‘meromorphic’ means meromorphic in the whole

16
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complex plane C. The following functions

f(z) =
1
4
√
8

(
a(z)3 +

1

a(z)

)
, g(z) =

1
4
√
−8

(
a(z)3 − 1

a(z)

)
,

h(z) = 4
√
−1 a(z)2 (3.2)

satisfy (3.1) for n = 4, and functions

f(z) =
1

3

(
(2−

√
6)a(z) + 1 +

2 +
√
6

a(z)

)
, (3.3)

g(z) =
1

6

((
(
√
6− 2) + (3

√
2− 2

√
3)i
)
a(z) + 2

− (
√
6 + 2)− (3

√
2 + 2

√
3)i

a(z)

)
, (3.4)

h(z) =
1

6

((
(
√
6− 2)− (3

√
2− 2

√
3)i
)
a(z) + 2

− (
√
6 + 2) + (3

√
2 + 2

√
3)i

a(z)

)
(3.5)

satisfy (3.1) for n = 5, see [6], [7], [9], [11].

Example 3.2 Regarding the case when n = 6 in (3.1), we have examples three
transcendental meromorphic functions f , g and h.

In [5], Gundersen constructed the example for the case n = 6 by the following
algebraic identity, and by Rellich’s result on elliptic functions, see e.g. [15], [25], [28].

Lemma 3.1 If a and b are any two constants, then

(a− b)6 + (a+ b)6 = (1 +
11

2
i)(a2 + (

3

5
− 4

5
i)b2)3 + (1− 11

2
i)(a2 + (

3

5
+

4

5
i)b2)3.

(3.6)

Theorem 3.1 Let Q3(z) be a polynomial of degree three that has three distinct
zeros. Then every non-constant solution F of the differential equation

(F ′)2 = Q3(F ) (3.7)

is an elliptic function.

Setting a rational function as a in Example 3.1, we ascertain that there exist
solutions of non-constant rational functions to (3.1) when n = 4 and 5.
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Concerning transcendental cases for (3.1), there exist transcendental mero-
morphic solutions to (3.1) when n ≤ 6, see [5], and know that there is no tran-
scendental meromorphic solutions to (3.1) when n ≥ 9, see [9], [13]. For the case
n ≤ 5, we know that there exist transcendental entire solutions to (3.1), and there
is no transcendental entire solutions to (3.1) when n ≥ 7. Setting an entire func-
tion of the form eα with an entire function α as a in Example 3.1, we ascertain
that there exist transcendental entire solutions to (3.1) when n = 4 and 5. The
cases n = 8 and 7 for transcendental meromorphic solutions, and the case n = 6
for transcendental entire solutions are still open, see e.g. [8], [19].

In [16], Ishizaki investigated transcendental solutions to (3.1) and obtained
alternative proofs of the known results for transcendental meromorphic and entire
solutions. Ishizaki also obtained that transcendental meromorphic solutions to
(3.1) for n = 8 and transcendental entire solutions to (3.1) for n = 6 satisfy some
differential equations if such solutions exist.

We recall the differential equations that solutions of (3.1) satisfy, and we in-
troduce auxiliary functions in Section 3.2. Preliminary lemmas are mentioned in
Section 3.3, and we give their proofs. Section 3.4 devotes to estimates on poles
and zeros of solutions to (3.1). We are concerned with meromorphic solutions to
(3.1) in Section 3.5 and with entire solutions to (3.1) in Section 3.6, and we state
the main theorems. We apply them to (3.1) in order to give alternative proofs of
the known results in both Sections 3.5 and 3.6, respectively. In Section 3.7, we
give conditions on degrees of polynomial solutions for n ≤ 5 if such solutions
exist.

We summarize the situation for k = 3 in Figure 3.1.
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Fig. 3.1: Known Results for fn + gn + hn = 1
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3.2 Differential Equations
For functions f1, f2, . . . , fn, n ≥ 2, we denote by W (f1, f2, . . . , fn) the Wron-
skian of f1, f2, . . . , fn. We assume that there exist functions f , g and h which
satisfy the functional equation (3.1). For the sake of simplicity, we put fn = F ,
gn = G and hn = H , and define

∆ =
W (F,G,H)

FGH
=

∣∣∣∣∣∣∣∣∣
1 1 1
F ′

F

G′

G

H ′

H
F ′′

F

G′′

G

H ′′

H

∣∣∣∣∣∣∣∣∣ . (3.8)

Using (3.1), we have

∆ =

∣∣∣∣∣∣∣
G′

G

H ′

H
G′′

G

H ′′

H

∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣
H ′

H

F ′

F
H ′′

H

F ′′

F

∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣
F ′

F

G′

G
F ′′

F

G′′

G

∣∣∣∣∣∣∣
=

(FG′H ′′ + F ′G′′H + F ′′GH ′)− (FG′′H ′ + F ′GH ′′ + F ′′G′H)

FGH

=
1

FGH

(
FG′(−F ′′ −G′′) + F ′G′′(1− F −G) + F ′′G(−F ′ −G′)

−
(
FG′′(−F ′ −G′) + F ′G(−F ′′ −G′′) + F ′′G′(1− F −G)

))
=

1

H

(
F ′G′′

FG
− F ′′G′

FG

)

=
1

H

∣∣∣∣∣∣∣
F ′

F

F ′′

F
G′

G

G′′

G

∣∣∣∣∣∣∣
=
W (F ′, G′)

FGH
.
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Then

∆ =
W (F ′, G′)

FGH
=

1

H

∣∣∣∣∣∣∣
F ′

F

G′

G
F ′′

F

G′′

G

∣∣∣∣∣∣∣ =
δFG

H
(3.9)

=
W (G′, H ′)

FGH
=

1

F

∣∣∣∣∣∣∣
G′

G

H ′

H
G′′

G

H ′′

H

∣∣∣∣∣∣∣ =
δGH

F
(3.10)

=
W (H ′, F ′)

FGH
=

1

G

∣∣∣∣∣∣∣
H ′

H

F ′

F
H ′′

H

F ′′

F

∣∣∣∣∣∣∣ =
δHF

G
. (3.11)

It follows from (3.8) and (3.9),

W (F,G,H) = W (F ′, G′)

=

∣∣∣∣∣F ′ G′

F ′′ G′′

∣∣∣∣∣
= F ′G′′ − F ′′G′

= nf ′fn−1n
(
g′′gn−1 + (n− 1)g′g′gn−2

)
−n
(
f ′′fn−1 + (n− 1)f ′f ′fn−2

)
ng′gn−1

= n2fn−2gn−2
(
(n− 1)f ′g′(fg′ − f ′g) + fg(f ′g′′ − f ′′g′)

)
= n2fn−2gn−2

(
(n− 1)f ′g′W (f, g) + fgW (f ′, g′)

)
Hence

W (F,G,H) = W (fn, gn, hn)

= n2fn−2gn−2V1 = n2gn−2hn−2V2 = n2hn−2fn−2V3, (3.12)

where

V1 = (n− 1)f ′g′W (f, g) + fgW (f ′, g′), (3.13)
V2 = (n− 1)g′h′W (g, h) + ghW (g′, h′), (3.14)
V3 = (n− 1)h′f ′W (h, f) + hfW (h′, f ′). (3.15)

We write

W (F,G,H) = W (fn, gn, hn) = n2fn−2gn−2hn−2V. (3.16)



Chapter 3 Case f 3 + g3 + h3 = 1 22

Then we have,

V1 = hn−2V, V2 = fn−2V, V3 = gn−2V, (3.17)

and we write

V =
V1
hn−2

=
1

hn−2
((n− 1) f ′g′W (f, g) + fgW (f ′, g′))

=
f 2g2

hn−2
· f

′g′

fg

(
(n− 1)

1

fg
(fg′ − f ′g) +

1

f ′g′
(f ′g′′ − f ′′g′)

)
=
f 2g2

hn−2

f ′g′

fg

(
(n− 1)

(
g′

g
− f ′

f

)
+

(
g′′

g′
− f ′′

f ′

))

=
f 2g2

hn−2
· f

′g′

fg

(n− 1)

∣∣∣∣∣∣
1 1
f ′

f

g′

g

∣∣∣∣∣∣+
∣∣∣∣∣∣
1 1
f ′′

f ′
g′′

g′

∣∣∣∣∣∣
 =

f 2g2

hn−2
ηfg (3.18)

Similarly,

V =
V2
fn−2

=
g2h2

fn−2
· g

′h′

gh

(n− 1)

∣∣∣∣∣∣
1 1
g′

g

h′

h

∣∣∣∣∣∣+
∣∣∣∣∣∣
1 1
g′′

g′
h′′

h′

∣∣∣∣∣∣
 =

g2h2

fn−2
ηgh (3.19)

V =
V3
gn−2

=
h2f 2

gn−2
· h

′f ′

hf

(n− 1)

∣∣∣∣∣∣
1 1
h′

h

f ′

f

∣∣∣∣∣∣+
∣∣∣∣∣∣
1 1
h′′

h′
f ′′

f ′

∣∣∣∣∣∣
 =

h2f 2

gn−2
ηhf .

(3.20)

By (3.8) and (3.16), we have

n2V = f 2g2h2∆. (3.21)

Furthermore, it follows from (3.18) to (3.20),

V 3 =
ηfgηghηhf

fn−6gn−6hn−6
. (3.22)

When f , g and h are polynomials, a polynomial W (F,G,H) has factors
fn−2gn−2, gn−2hn−2 and hn−2fn−2 by (3.12). This implies that W (F,G,H) has
a factor fn−2gn−2hn−2, and hence V is a polynomial. Considering the case f , g
and h are transcendental entire functions, we similarly obtain that V is an entire
function. In particular, V reduces to a small function with respect to f , g and h
when n = 6 if such solutions exist, see [16, Proposition 6.1]. It is known that there
exist transcendental entire solutions to (3.1) when n ≤ 5. We explicitly compute
V of the solutions mentioned in Example 3.1.
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Example 3.3 For the solutions f , g and h to (3.1) given by (3.2), we have

V = −24a(a′)3. (3.23)

This implies that V is not a small function in general with respect to f , g and h
in this case. Consider the solutions f , g and h to (3.1) given by (3.3) to (3.5).
We set a = eα with an entire function α. Then we ascertain that f , g and h are
transcendental entire solutions. We have

V =
4i√
3

(
a′

a

)3

=
4i√
3
(α′)

3
, (3.24)

which is a small function with respect to f , g and h in this case.

In general, V is a rational functions function when f , g and h are solutions of
rational functions to (3.1) if such solutions exist, and V is a meromorphic func-
tions function when f , g and h are transcendental meromorphic solutions to (3.1)
if such solutions exist. In particular, V reduces to a small function with respect
to f , g and h when n = 8, see [16, Proposition 5.1]. We give the definition of a
small function with respect to f , g and h later in Subsection 3.5.2.
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3.3 Preliminary Lemmas
We first recall certain elementary properties of the Wronskian. Let u ̸≡ 0 and
v ̸≡ 0 be meromorphic functions. Define

δ(z) =
W (u′(z), v′(z))

u(z)v(z)
=

∣∣∣∣∣∣∣∣
u′(z)

u(z)

v′(z)

v(z)

u′′(z)

u(z)

v′′(z)

v(z)

∣∣∣∣∣∣∣∣ .
Suppose that u has a zero at z0 of multiplicity ν. Then we may write in a neigh-
bourhood of z0 by the Laurent expansions.

u(z) = aν(z − z0)
ν + aν+1(z − z0)

ν+1 + aν+2(z − z0)
ν+2 + · · ·

u′(z) = νaν(z − z0)
ν−1 + (ν + 1)aν+1(z − z0)

ν + (ν + 2)aν+2(z − z0)
ν+1 + · · ·

u′′(z) = ν(ν − 1)aν(z − z0)
ν−2 + (ν + 1)νaν+1(z − z0)

ν−1

+ (ν + 2)(ν + 1)aν+2(z − z0)
ν + · · · .

Then we have

u′(z)

u(z)
=
νaν(z − z0)

ν−1 + (ν + 1)aν+1(z − z0)
ν + (ν + 2)aν+2(z − z0)

ν+1 + · · ·
aν(z − z0)ν + aν+1(z − z0)ν+1 + aν+2(z − z0)ν+2 + · · ·

=
νaν(z − z0)

ν−1
(
1 +

ν + 1

ν

aν+1

aν
(z − z0) +

ν + 2

ν

aν+2

aν
(z − z0)

2 + · · ·
)

aν(z − z0)ν
(
1 +

aν+1

aν
(z − z0) +

aν+2

aν
(z − z0)2 + · · ·

)
=

ν

(z − z0)
· 1

1 +
aν+1

aν
(z − z0) +

aν+2

aν
(z − z0)2 + · · ·

·

((
1 +

aν+1

aν
(z − z0) +

aν+2

aν
(z − z0)

2 + · · ·
)

+
(1
ν

aν+1

aν
(z − z0) +

2

ν

aν+2

aν
(z − z0)

2 + · · ·
))

=
ν

(z − z0)
+ · · · .

Similarly,

u′′(z)

u(z)
=
ν(ν − 1)

(z − z0)2
+ · · · .



Chapter 3 Case f 3 + g3 + h3 = 1 25

Suppose that u has a pole at z0 of multiplicity µ. Then we may write in a neigh-
bourhood of z0 by the Laurent expansions.

u(z) =
cµ

(z − z0)µ
+

cµ−1

(z − z0)µ−1
+

cµ−2

(z − z0)µ−2
+ · · ·

u′(z) =
−µcµ

(z − z0)µ+1
+

−(µ− 1)cµ−1

(z − z0)µ
+

−(µ− 2)cµ−2

(z − z0)µ−1
+ · · ·

u′′(z) =
µ(µ+ 1)cµ
(z − z0)µ+2

+
(µ− 1)µcµ−1

(z − z0)µ+1
+

(µ− 2)(µ− 1)cµ−2

(z − z0)µ
+ · · · .

Then we have

u′(z)

u(z)
=

−µcµ
(z − z0)µ+1

+
−(µ− 1)cµ−1

(z − z0)µ
+

−(µ− 2)cµ−2

(z − z0)µ−1
+ · · ·

cµ
(z − z0)µ

+
cµ−1

(z − z0)µ−1
+

cµ−2

(z − z0)µ−2
+ · · ·

=

−µcµ
(z − z0)µ+1

(
1 +

µ− 1

µ

cµ−1

cµ
(z − z0) +

µ− 2

µ

cµ−2

cµ
(z − z0)

2 + · · ·
)

cµ
(z − z0)µ

(
1 +

cµ−1

cµ
(z − z0) +

cµ−2

cµ
(z − z0)2 + · · ·

)
=

−µ
(z − z0)

· 1

1 +
cµ−1

cµ
(z − z0) +

cµ−2

cµ
(z − z0)2 + · · ·

·

((
1 +

cµ−1

cµ
(z − z0) +

cµ−2

cµ
(z − z0)

2 + · · ·
)

+
(−1

µ

cµ−1

cµ
(z − z0) +

−2

µ

cµ−2

cµ
(z − z0)

2 + · · ·
))

=
−µ

(z − z0)
+ · · ·

Similarly,

u′′(z)

u(z)
=
µ(µ+ 1)

(z − z0)2
+ · · · .

Lemma 3.2

(i) Suppose that z0 is a pole of u, or a zero of u. If z0 is neither a zero nor a
pole of v, then δ is analytic at z0 or has a pole at z0 of multiplicity at most
2.

(ii) If z0 is a pole of u, and z0 is a zero of v of multiplicity at least 2, then δ has
a pole at z0 of multiplicity 3.
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(iii) Suppose that z0 is a pole of u of multiplicity ku, and a pole of v of multiplic-
ity kv. If ku = kv, then δ is analytic at z0 or has a pole at z0 of multiplicity
at most 2. If ku ̸= kv, then δ has a pole at z0 of multiplicity 3.

(iv) Suppose that z0 is a zero of u of multiplicity mu ≥ 2, and a zero of v of
multiplicity mv ≥ 2. If mu = mv, then δ is analytic at z0 or has a pole at z0
of multiplicity at most 2. If mu ̸= mv, then δ has a pole at z0 of multiplicity
3.
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3.4 Estimates for Poles and Zeros of f , g and h
Let w be a meromorphic function. If z0 is a pole of multiplicity µ (≥ 1) for w(z),
then ω(z0, w) = µ, and if w(z0) ̸= ∞, then ω(z0, w) = 0. The aim of this section
is to obtain the following lemmas.

Lemma 3.3 Suppose that n ≥ 8 in (3.1), and suppose there exist non-constant
meromorphic functions f , g and h satisfying (3.1). Let V be a meromorphic func-
tion given by (3.16). Then the meromorphic function V does not have any poles.

Lemma 3.4 Suppose that n = 6 in (3.1), and suppose there exist non-constant
entire functions f , g and h satisfying (3.1). Further, we suppose that z0 is a
multiple zero of at least one of f , g and h. Then V has a zeros at z0, where V is
the entire function given by (3.16).

Proof of Lemma 3.3 By means of (3.21), we see that z0 is a zero or a pole of
at least one of the f , g and h if we suppose that V has a pole at z0.

We denote the sets of poles of f , g and h by Pf , Pg and Ph, respectively, and
write P = Pf

⋃
Pg

⋃
Ph. Similarly, sets of zeros of f , g and h are denoted by

Zf , Zg and Zh, respectively, and we write Z = Zf

⋃
Zg

⋃
Zh.

First we assert that any z0 ∈ Z can not be a pole of V . We assume the contrary,
namely, there exists z0 ∈ Z such that V (z0) = ∞. We may assume that z0 ∈ Zf

without loss of generality. We use figures for explanation.

Fig. 3.2: Estimates for poles and zeros

It is impossible that z0 ∈ Zg

⋂
Zh by (3.1).
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Fig. 3.3: Estimates for poles and zeros

The case when only one of g and h has a pole at z0 is impossible by (3.1),
namely, the cases z0 ∈ Pg

⋂
Zh, z0 ∈ Zg

⋂
Ph, z0 ∈ (C \ (Zg

⋃
Pg))

⋂
Ph and

z0 ∈ Pg

⋂
(C \ (Zh

⋃
Ph)) are impossible by (3.1).

Fig. 3.4: Estimates for poles and zeros

When z0 ∈ (C \ (Zg

⋃
Pg))

⋂
Zh, we have V3(z0) = 0 by (3.15), and hence

V (z0) = 0 by (3.20), a contradiction.
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Fig. 3.5: Estimates for poles and zeros

Similarly, by (3.13) and (3.18), V (z0) = 0 when z0 ∈ Zg

⋂
(C \ (Zh

⋃
Ph)),

a contradiction.
When z0 ∈ (C \ (Zg

⋃
Pg))

⋂
(C \ (Zh

⋃
Ph)), we have V3(z0) ̸= ∞ by

(3.15), and hence V (z0) ̸= ∞ by (3.20), a contradiction.

Fig. 3.6: Estimates for poles and zeros

The case z0 ∈ Pg

⋂
Ph is left for consideration when z0 ∈ Zf . By (3.18), we

have ω(z0, ηfg) ≤ 3, which implies that ω(z0, f 2ηfg) ≤ 1. By (3.1), ω(z0, g) =
ω(z0, h), and hence g2/hn−2 has a zero at z0 of multiplicity (n− 4)ω(z0, g) since
n ≥ 8. Using (3.18), we conclude that V has a zero at z0 of multiplicity at least
(n− 4)ω(z0, g)− 1, a contradiction.
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Fig. 3.7: Estimates for poles and zeros

The first assertion follows.

Fig. 3.8: Estimates for poles and zeros

Secondly, we consider the case z0 ∈ P , and assert that if z0 ∈ P is a pole
of V , then z0 ∈ Pf

⋂
Pg

⋂
Ph. We may assume that z0 ∈ Pf without loss of

generality. We use figures for explanation.
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Fig. 3.9: Estimates for poles and zeros

By the arguments above, we do not have to treat the case when z0 is a zero of
at least one of f , g and h.

Fig. 3.10: Estimates for poles and zeros

It is impossible that z0 ∈ (C \ (Zg

⋃
Pg))

⋂
(C \ (Zh

⋃
Ph)) by (3.1).
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Fig. 3.11: Estimates for poles and zeros

Suppose that z0 ∈ (C \ (Zh

⋃
Ph))

⋂
Pg. We have ω(z0, ηgh) ≤ 2 by (3.19).

By (3.1), ω(z0, f) = ω(z0, g), and hence g2/fn−2 has a zero at z0 of multiplicity
(n− 4)ω(z0, f). By (3.19), we conclude that V has a zero at z0 of multiplicity at
least (n− 4)ω(z0, f)− 2 since n ≥ 8, a contradiction.

Fig. 3.12: Estimates for poles and zeros

This implies that z0 ∈ Ph. Similarly, changing roles of g and h, we conclude
that V has a zero at z0 of multiplicity at least that (n − 4)ω(z0, f) − 2 when
z0 ∈ (C \ (Zg

⋃
Pg))

⋂
Ph by (3.19). Hence, we showed the second assertion.
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Fig. 3.13: Estimates for poles and zeros

Finally, we consider the case z0 ∈ Pf

⋂
Pg

⋂
Ph. We may set d = ω(z0, f) =

ω(z0, g) ≥ ω(z0, h) = k by (3.1) without loss of generality.
In the case d > k ≥ 1, by (3.19) we have ω(z0, ηgh) ≤ 3. Since n ≥ 8, by

(3.19), we obtain that V has a zero at z0 of multiplicity at least

(n− 2)d− (2d+ 2k + 3) ≥ (n− 6)d− 1 ≥ 2n− 13.

For the case d = k ≥ 1, we note that ω(z0, ηgh) ≤ 2 by the properties of Wron-
skian in the case d = k. By (3.19), ω(z0, 1/V ) can be estimates as

ω

(
z0,

1

V

)
≥ (n− 2)d− (2d+ 2d+ 2) = (n− 6)d− 2. (3.25)

By (3.25), if d ≥ 2, then V has a zero at z0 of multiplicity at least 2, since n ≥ 8.
If d = 1, V does not have neither a zero nor a pole at z0 by (3.25). In particular, if
n ≥ 9, then V has a zero at z0. We conclude that V cannot have a pole at z0 when
z0 ∈ Pf

⋂
Pg

⋂
Ph.
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Fig. 3.14: Estimates for poles and zeros

Thus we have proved Lemma 3.3. □

Remark 3.1 By the arguments in the proof of Lemma 3.3, we note that if z0 ∈
P , then z0 is a zero of V for n ≥ 9. Further, we have that z0 is a zero of V for
n = 8 if z0 ∈ P of multiplicity at least 2.

Proof of Lemma 3.4 We may assume that z0 ∈ Zf and ω(z0, 1/f) = d ≥ 2
without loss of generality. By (3.1), it is impossible that z0 ∈ Zg

⋂
Zh. Hence,

we may assume that z0 ̸∈ Zg without loss of generality. By (3.20), we see that ηhf
has a pole of multiplicity at most 3, and hence we have

ω

(
z0,

1

V

)
≥ 2d− 3 ≥ 1.

This shows that V has a zero at z0. □
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3.5 Alternative Proofs of Known Results for Mero-
morphic Solutions

As we mentioned in Section 3.1, it is known that there do not exist solutions
of non-constant rational functions to (3.1) when n ≥ 8, and there do not exist
transcendental meromorphic solutions to (3.1) when n ≥ 9. Further, if there exist
transcendental meromorphic solutions to (3.1) when n = 8, then they satisfy a
differential equation. In this section, we give alternative proofs of these results
and a slight improvement.

3.5.1 Solutions of Rational Functions
Here we consider solutions of rational functions to (3.1). We first show the fol-
lowing theorem.

Theorem 3.2 Suppose that n ≥ 7 in (3.1), and suppose that there exist non-
constant rational functions f , g and h satisfying (3.1). Let V be a rational function
given by (3.16). Then

(n− 6)(m(f) +m(g) +m(h)) ≤ 3

(
n(V )− n

(
1

V

))
. (3.26)

As a corollary to Theorem 3.2, we obtain the known result below.

Corollary 3.1 There do not exist solutions of non-constant rational functions to
(3.1) for n ≥ 8.

Proof of Theorem 3.2 Let R be an arbitrary rational function. We write R =
RN/RD with relatively prime polynomialsRN andRD. SinceR′/R = R′

N/RN−
R′

D/RD, we see m(R′/R) ≤ max
(
m(R′

N/RN), m(R′
D/RD)

)
= 0 by Lemma 2.2 (ii), (i).

Further, using this with Lemma 2.2 (ii), we obtain m(R′′/R) ≤ m(R′′/R′) +
m(R′/R) = 0. Hence, by (3.8), and by (3.18) to (3.20), we have

m(∆) = 0, m(ηfg) = m(ηgh) = m(ηhf ) = 0. (3.27)

Combining (3.21) and (3.22), we obtain

n2(n−6)V n = ∆n−6(ηfgηghηhf )
2. (3.28)

By (3.28), Lemma 2.2 (ii) and (3.27), we have for n ≥ 7

nm(V ) ≤ 2(m(ηfg) +m(ηgh) +m(ηhf )) + (n− 6)m(∆) = 0,
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which gives
m(V ) = 0. (3.29)

By (3.19), Lemma 2.2 (ii) and (3.27), we have

(n− 2)m(f) ≤ 2m(g) + 2m(h) +m(ηgh) +m

(
1

V

)
= 2m(g) + 2m(h) +m

(
1

V

)
. (3.30)

Similarly, by (3.18) and (3.20), we have

(n− 2)m(h) ≤ 2m(f) + 2m(g) +m

(
1

V

)
, (3.31)

(n− 2)m(g) ≤ 2m(h) + 2m(f) +m

(
1

V

)
. (3.32)

Combining (3.30) to (3.32), and using (2.3) and (3.29), we obtain

(n− 6)(m(f) +m(g) +m(h)) ≤ 3m

(
1

V

)
= 3

(
n(V ) +m(V )− n

(
1

V

))
= 3

(
n(V )− n

(
1

V

))
.

We have thus proved Theorem 3.2. □
Proof of Corollary 3.1 Assume that there exist rational functions f , g and h
satisfying (3.1). By means of Lemma 3.3, we obtain n(V ) = 0 since n ≥ 8. By
Theorem 3.2, we have

m(f) +m(g) +m(h) + n

(
1

V

)
= 0. (3.33)

This implies that V is a constant, and that f , g and h have the property that the
degree of the numerator is equal to or less than the degree of the denominator.
This means that if P = ∅ all of f , g and h reduce to constants, a contradiction.

We now consider the case P ̸= ∅. If f has a pole of multiplicity at least 2, then
by Remark 3.1, V has a zero, a contradiction. Hence, f has no pole or each pole
of f is a simple pole. Similarly, we see that g and h possess the same property.
Since we assume P ̸= ∅, at least one of f , g and h admits a simple pole. On
the other hand, for any entire function φ including a polynomial, f(φ), g(φ) and
h(φ) satisfy (3.1). Choosing a suitable polynomial φ, at least one of f(φ), g(φ)
and h(φ) admits a multiple pole, which is a contradiction. □
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3.5.2 Transcendental Meromorphic Solutions
From this section, we will utilize the Nevanlinna theory, which was mentioned

in Chapter 2 Preliminaries items related to this dissertation.
Under the assumption that there exist transcendental meromorphic solutions f ,
g and h to (3.1), we write T ∗(r) = T (r, f) + T (r, g) + T (r, h), and denote by
S∗(r) any quantity that satisfies S∗(r) = o(1)T ∗(r) as r → ∞, possibly outside
a set of r of finite linear measure. Clearly if φ(r) = S(r, f), S(r, g) or S(r, h),
then φ(r) = S∗(r). We call a meromorphic function a satisfying T (r, a) = S∗(r)
small with respect to f , g and h in this dissertation. We obtain the transcendental
counterparts to Subsection 3.5.1.

Theorem 3.3 Suppose that n ≥ 7 in (3.1), and suppose that there exist non-
constant meromorphic functions f , g and h satisfying (3.1), at least of which is
transcendental. Let V be a meromorphic function given by (3.16). Then

(n− 6)(m(r, f) +m(r, g) +m(r, h)) ≤ 3

(
N(r, V )−N

(
r,

1

V

))
+ S∗(r).

(3.34)

As a corollary to Theorem 3.3, we obtain the result below.

Corollary 3.2 There do not exist transcendental meromorphic solutions to (3.1)
for n ≥ 9. If there exist non-constant meromorphic functions f , g and h satisfying
(3.1) for n = 8, at least of which is transcendental, then there exists a small entire
function a with respect to f , g and h such that

W (f 8, g8, h8) = af 6g6h6. (3.35)

Proof of Theorem 3.3 We adopt the similar idea to the proof of Theorem 3.2.
By the lemma on the logarithmic derivatives, we have

m(r,∆) = S∗(r), m(r, ηfg) = S∗(r), m(r, ηgh) = S∗(r), m(r, ηhf ) = S∗(r).
(3.36)

m(r, V ) = S∗(r). (3.37)

In fact, by (3.28) and the lemma on the logarithmic derivatives, we have

nm(r, V ) ≤ 2(m(r, ηfg) +m(r, ηgh) +m(r, ηhf )) + (n− 6)m(r,∆) = S∗(r),

which shows that the assertion (3.37) holds. It follows from (3.19) and (3.36),

(n− 2)m(r, f) ≤ 2m(r, g) + 2m(r, h) +m(r, ηgh) +m

(
r,

1

V

)
+ S∗(r)

= 2m(r, g) + 2m(r, h) +m

(
r,

1

V

)
+ S∗(r). (3.38)
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Similarly, by (3.18) and (3.20), we have

(n− 2)m(r, h) ≤ 2m(r, f) + 2m(r, g) +m

(
r,

1

V

)
+ S∗(r), (3.39)

(n− 2)m(r, g) ≤ 2m(r, h) + 2m(r, f) +m

(
r,

1

V

)
+ S∗(r). (3.40)

By (3.38) to (3.40), and by (3.37) and the first main theorem due to Nevanlinna,
we obtain

(n− 6)(m(r, f) +m(r, g) +m(r, h))

≤ 3m

(
r,

1

V

)
+ S∗(r) = 3

(
N(r, V )−N

(
r,

1

V

))
+ S∗(r).

Hence we proved Theorem 3.3. □
Proof of Corollary 3.2 Assume that there exist transcendental meromorphic
functions f , g and h satisfying (3.1). By means of Lemma 3.3, we see that V
is an entire function, and hence N(r, V ) = S∗(r). Combining this and (3.37),
we obtain that T (r, V ) = S∗(r), which shows that V is a small entire function
with respect to f , g and h. In particular, this implies that f , g and h satisfy the
differential equation (3.16) with a small entire function V for n = 8. Setting
a = 64V in (3.16), we obtain (3.35).

We consider below the case n ≥ 9. By means of Theorem 3.3 and Lemma 3.3,
we have

m(r, f) +m(r, g) +m(r, h) = S∗(r). (3.41)

By Remark 3.1, if z0 ∈ P then z0 is a zero of V . We set Φ(d) = d/((n−6)d−2),
d ≥ 1, which is a decreasing function in d. Using the arguments in the proof of
Lemma 3.3, we have

ω(z0, f) ≤ Φ(ω(z0, f))ω

(
z0,

1

V

)
≤ 1

n− 8
ω

(
z0,

1

V

)
, (3.42)

which yields N(r, f) ≤ N(r, 1/V ) ≤ T (r, V ) + S∗(r). Since V is a small
function with respect to f , g and h, we obtain N(r, f) = S∗(r). Similarly, we
obtain N(r, g) = S∗(r) and N(r, h) = S∗(r). Combining these estimates with
(3.41), we conclude that T (r, f) = S∗(r), T (r, g) = S∗(r) and T (r, h) = S∗(r),
a contradiction. Thus, for n ≥ 9 there do not exist transcendental meromorphic
solutions to (3.1). □

In [16], Ishizaki showed that (3.35) holds with a small meromorphic function
a. Corollary 3.2 says that a does not have any poles.
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3.6 Alternative Proofs of Known Results for Entire
Solutions

3.6.1 Polynomial Solutions
We adopt similar methods to those used in Subsection 3.5.1 to obtain the known
result below.

Corollary 3.3 There do not exist nonconstant polynomial solutions to (3.1) for
n ≥ 6.

Proof of Corollary 3.3 Assume that there exist polynomials f , g and h satis-
fying (3.1). When n ≥ 7, we apply Theorem 3.2 to polynomial solutions noting
that m(f) = deg f , m(g) = deg g and m(h) = deg h to obtain

(n− 6)(deg f + deg g + deg h) ≤ 3n(V ). (3.43)

Since f , g and h are polynomials, V is a polynomial given by (3.16). This implies
that n(V ) = 0. By (3.43), deg f + deg g + deg h = 0. This means that all of f , g
and h are constants, a contradiction.

We consider the case n = 6. It follows from (3.22),

V 3 = ηfgηghηhf . (3.44)

We note that (3.27) holds for n ≥ 2. By (3.44) and (3.27), we obtain

deg V = m(V ) = 0, (3.45)

which implies that V reduces to a constant.
If Z = ∅, all of f , g and h reduce to constants, a contradiction. We consider

the case Z ̸= ∅. If f has a zero of multiplicity at least 2, then Lemma 3.4, V has
a zero, a contradiction. Hence, f has at least one simple zero. Similarly, we see
that g and h possess the same property. On the other hand, for any entire function
φ including a polynomial, f(φ), g(φ) and h(φ) satisfy (3.1). Choosing a suitable
polynomial φ, at least one of f(φ), g(φ) and h(φ) admits a multiple zero, which
is a contradiction. □

3.6.2 Transcendental Entire Solutions
As a corollary to Theorem 3.3, we obtain the known result for transcendental
entire solutions below.
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Corollary 3.4 There do not exist transcendental entire solutions to (3.1) for n ≥
7. If there exist transcendental entire functions f , g and h satisfying (3.1) for
n = 6, then there exists a small entire function b with respect to f , g and h such
that

W (f 6, g6, h6) = bf 4g4h4. (3.46)

Proof of Corollary 3.4 Assume that there exist transcendental entire functions
f , g and h satisfying (3.1) for n ≥ 7. Since V is entire, by Theorem 3.3, we
have m(r, f) +m(r, g) +m(r, h) = S∗(r). Since f , g and h are entire, we have
T (r, f) = S∗(r), T (r, g) = S∗(r) and T (r, h) = S∗(r), a contradiction. Hence
there do not exist transcendental entire solutions to (3.1) for n ≥ 7.

Concerning the case n = 6, by (3.44) and (3.36), we have

3m(r, V ) ≤ m(r, ηfg) +m(r, ηgh) +m(r, ηhf ) = S∗(r),

which shows that m(r, V ) = S∗(r). Since V is entire, we have T (r, V ) = S∗(r).
Hence V is a small entire function with respect to f , g and h. Setting b = 36V in
(3.16), we see that the assertion follows. □
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3.7 Degrees of Polynomial Solutions
We discuss degrees of polynomial solutions to (3.1) below. Suppose that there
exist polynomials f , g and h satisfy (3.1). Clearly, f(P ), g(P ) and h(P ) are
polynomial solutions to (3.1) for any polynomial P . It implies that there is no
upper bound of degrees of polynomial solutions. For the lower bound, we have
the following result.

Proposition 3.1 Let 2 ≤ n ≤ 5 be an integer. Suppose that there exist non-
constant polynomials f , g and h satisfying (3.1), and assume d = deg f =
deg g ≥ deg h = k. Then

(i) For the case d = k, we have d ≥ 4/(6− n).

(ii) For the case d > k, we have
d ≥ 2 and k ≥ 1 when n = 2, 3,
d ≥ 3 and k ≥ 2 when n = 4,
d ≥ 5 and k ≥ 4 when n = 5.

Regarding (ii), we improve it in Proposition 4.1 mentioned later.

Example 3.4 We recall examples for n = 2 and n = 3(
1 + P (z)√

2

)2

+

(
1− P (z)√

2

)2

+ (iP (z))2 = 1, (3.47)

and (
1 + P (z)3

3
√
2

)3

+

(
1− P (z)3

3
√
2

)3

+ (ω
3
√
3P (z)2)3 = 1, (3.48)

where P (z) is an arbitrary polynomial and ω3 = −1, see e.g. [9], [13], [22].

This example shows that both cases deg f = deg g = deg h and deg f =
deg g > deg h occur in general.

We see that Proposition 3.1 follows immediately from the following lemma.

Lemma 3.5 Suppose that there exist non-constant polynomials f , g and h satis-
fying (3.1), and assume d = deg f = deg g ≥ deg h = k. Let v be the degree of
V defined in (3.16).

(i) For the case d = k, we have

(6− n)d ≥ 4 + v. (3.49)
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(ii) For the case d > k, we have
(4− n)d+ 2k = 3 + v. (3.50)

The method for the proof of Lemma 3.5 is similar to the idea in [24]. Since
the situations are different, we give the proof.

Proof of Lemma 3.5
(i) First we assume that deg f = deg g = deg h.

Write

f(z) = adz
d + ad−1z

d−1 + · · ·+ a0, ad ̸= 0,

g(z) = bdz
d + bd−1z

d−1 + · · ·+ b0, bd ̸= 0.

Then

f ′(z) = dadz
d−1 + (d− 1)ad−1z

d−2 + · · ·+ a1,

g′(z) = dbdz
d−1 + (d− 1)bd−1z

d−2 + · · ·+ b1,

f ′′(z) = d(d− 1)adz
d−2 + (d− 1)(d− 2)ad−1z

d−3 + · · ·+ a2,

g′′(z) = d(d− 1)bdz
d−2 + (d− 1)(d− 2)bd−1z

d−3 + · · ·+ b2.

So, we can calculate as follows.

W (f, g) =

∣∣∣∣∣f g

f ′ g′

∣∣∣∣∣ = fg′ − f ′g

= dadbdz
d+d−1 + (d− 1)adbd−1z

d+d−2 + · · ·
− (dadbdz

d+d−1 + (d− 1)ad−1bdz
d+d−2 + · · · )

= (d− 1)(adbd−1 − ad−1bd)z
2d−2 + · · ·

W (f ′, g′) =

∣∣∣∣∣f
′ g′

f ′′ g′′

∣∣∣∣∣ = f ′g′′ − f ′′g′

= d2(d− 1)adbdz
(d−1)+(d−2) + d(d− 1)2ad−1bdz

(d−2)+(d−2) + · · ·
− (d2(d− 1)adbdz

(d−1)+(d−2) + d(d− 1)2adbd−1z
(d−2)+(d−2) + · · · )

= d(d− 1)2(ad−1bd − adbd−1)z
2d−4 + · · · .

Then we see that degW (f, g) is at most 2d − 2, and degW (f ′, g′) is at most
2d− 4.
By (3.12) and (3.13),we have follows.

W (F,G,H) = W (fn, gn, hn)

= n2fn−2gn−2V1

= n2fn−2gn−2
(
(n− 1)f ′g′W (f, g) + fgW (f ′g′)

)
.
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Hence, degW (F,G,H) is at most 2nd− 4.
By (3.16), we have

2nd− 4 ≥ degW (F,G,H) = deg(fn−2gn−2hn−2V ) = 3d(n− 2) + v,

and hence (3.49) follows. We have thus proved (i).

(ii) We next consider the case k = deg h < d. Then degW (h, f) = d + k − 1,
and degW (h′, f ′) = d + k − 3. By (3.15), we have that degW (F,G,H) is at
most n(d + k)− 3. Further, we investigate degW (F,G,H) in terms of (3.15) in
detail. Write

f(z) = adz
d + ad−1z

d−1 + · · ·+ a0, ad ̸= 0, (3.51)

h(z) = ckz
k + ck−1z

k−1 + · · ·+ c0, ck ̸= 0. (3.52)

Using (3.51) and (3.52), we compute

(n− 1)h′f ′W (h, f) + hfW (h′, f ′) = n(d− k)dka2dc
2
k z

2d+2k−3 + · · ·+ C,

where C is a constant. This gives that degW (F,G,H) = n(d+ k)− 3.
By means of (3.16), we obtain n(d+ k)− 3 = 2d(n− 2) + k(n− 2) + v, that

is, (3.50). Hence, (ii) is proved. □

Remark 3.2 If n ≥ 6, it is impossible to exist polynomial solutions to (3.1) for
both cases d = k and d > k by (3.49) and (3.50). This yields an alternative proof
of Corollary 3.3.

Example 3.5 We compute degW (F,G,H) and deg V of the examples given in
(3.47) and (3.48).

For (3.47), we obtain W (F,G,H) = 2P ′3 and V (z) = 1
2
P ′3 by simple com-

putations. Setting P (z) = z for simplicity, we have W (F,G,H) = 4V = 2. In
this case, the equality in (3.49) holds with n = 2, d = k = 1 and v = 0. This
example shows that the estimate (3.49) in Lemma 3.5 is sharp.

We consider (3.48) nothing that d > k. We haveW (F,G,H) = −243P 6(−1+
P 6)P ′3, and V = (9

3
√
62P 4P ′3)/ω. Setting P (z) = z for simplicity, we have

W (F,G,H) = −243z6(−1+z6), and V (z) = (9
3
√
62z4)/ω. We see that equality

in (3.50) holds, since n = 3, d = 3, k = 2 and v = 4 in this case.



Chapter 4

Case General

4.1 Background of Case General
In this chapter, we are concerned with the general problem of determining whether

or not there exist non-constant meromorphic functions f1, f2, . . . , fk which satisfy
the Fermat type functional equation

fn
1 + fn

2 + · · ·+ fn
k = 1, (4.1)

for a given pair of positive integers {n, k}. We consider this problem for the
following four classes of functions: meromorphic functions, rational functions,
entire functions, polynomials. For each of these classes of functions, there exist
pairs of positive integers {n, k} (a) where (4.1) does not possess non-constant
solutions, (b) where (4.1) possesses non-constant solutions, and (c) where it is
not known whether (4.1) possesses non-constant solutions; see [9], [13]. It is
organized as follows.

If solutions exist
Meromorphic functions n ≤ k2 − 1

Rational functions n ≤ k2 − 2
Entire functions n ≤ k2 − k

Polynomials n ≤ k2 − k − 1

In the case of k = 2, it is clear where the solution exists in the four functions.

If solutions exist
Meromorphic functions n ≤ k2 − 1 = 3

Rational functions n ≤ k2 − 2 = 2
Entire functions n ≤ k2 − k = 2

Polynomials n ≤ k2 − k − 1 = 1

44



Chapter 4 Case General 45

Example 4.1 We recall examples for n = 2 and n = 3 of fn
1 + fn

2 = 1.

sin2w(z) + cos2w(z) = 1,

where w(z) is an arbitrary entire function.(
1 + w(z)2

2w(z)

)2

+

(
i
1− w(z)2

2w(z)

)2

= 1,

where w(z) is an arbitrary meromorphic function.(
1 + c℘′(z)

2℘(z)

)3

+

(
1− c℘′(z)

2℘(z)

)3

= 1,

where ℘(z) is an elliptic function satisfying (℘′)2 = 4℘3 − 1, and c =
1√
3

.

Fig. 4.1: Known Results for fn + gn = 1
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In Chapter 3 we considered the case k = 3 and showed the status of the
solution in Figure 3.1. The open questions for those {n, k} in (c) have attracted
increasing interest. The main purpose of this chapter is to give, for each class of
functions, necessary conditions that non-constant solutions of (4.1) where {n, k}
is in (c), would have to satisfy.

Section 4.3 contains the main results for rational functions and transcenden-
tal meromorphic functions, while corollaries and observations on transcendental
entire functions and polynomials are in Sections 4.4 and 4.5. Section 4.2 contain
observations about rational functions and calculations with Wronskians of mero-
morphic functions, which we use to prove our results. Last, we discuss the case
when k = 4 in (4.1) in Section 4.6.

In this chapter as well as the previous chapter, we use standard notations in
the Nevanlinna theory described in Preliminaries. Under the assumption that
there exist transcendental meromorphic solutions f1, f2, . . . , fk to (4.1), we write
T ∗(r) =

∑k
j=1 T (r, fj), and denote by S∗(r) any quantity that satisfies S∗(r) =

o(1)T ∗(r) as r → ∞, possibly outside a set of r of finite linear measure. Clearly,
if ψ(r) = S(r, fj) for some j ∈ {1, 2, . . . , k}, then ψ(r) = S∗(r). We call a
meromorphic function a satisfying T (r, a) = S∗(r) small with respect to f1, f2,
. . . , fk.
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4.2 Calculations with Wronskians
We assume that there exist non-constant meromorphic functions f1, f2, . . . , fk
which satisfy the functional equation (4.1) where n and k are fixed integers satis-
fying n ≥ k − 1 and k ≥ 2. For the sake of simplicity we put fn

1 = F1, fn
2 = F2,

. . . , fn
k = Fk, and define

W = W (fn
1 , f

n
2 , . . . , f

n
k )

= W (F1, F2, . . . , Fk)

=

∣∣∣∣∣∣∣∣∣
F1 F2 . . . Fk

F ′
1 F ′

2 . . . F ′
k

...
... . . . ...

F
(k−1)
1 F

(k−1)
2 . . . F

(k−1)
k

∣∣∣∣∣∣∣∣∣ . (4.2)

First using (4.1), we eliminate fk and Fk from (4.2),

W =

∣∣∣∣∣∣∣∣∣
F1 F2 . . . Fk−1 1
F ′
1 F ′

2 . . . F ′
k−1 0

...
... . . . ...

...
F

(k−1)
1 F

(k−1)
2 . . . F

(k−1)
k−1 0

∣∣∣∣∣∣∣∣∣
= (−1)k−1

∣∣∣∣∣∣∣
F ′
1 F ′

2 . . . F ′
k−1

...
... . . . ...

F
(k−1)
1 F

(k−1)
2 . . . F

(k−1)
k−1

∣∣∣∣∣∣∣ . (4.3)

By the Leibniz formula, for any meromorphic function φ, we have (φn)′ =
φn−k+1U1(φ), (φn)′′ = φn−k+1U2(φ), . . . , (φn)(k−1) = φn−k+1Uk−1(φ), where
Uj(φ), j = 1, 2, . . . , k − 1 are homogeneous differential polynomials in φ of de-
gree k − 1.
Calculation examples as follows.

When n = 6 and k = 3, (φ6)′′ = φ4 · (6(5(φ′)2 + φφ′′)).
When n = 12 and k = 4, (φ12)′′′ = φ9 · (12(110(φ′)3 + 33φφ′φ′′ + φ2φ′′′)).

This implies that if φ ̸≡ 0 is a rational function, then from (2.4) and (2.5),

m

(
Uj(φ)

φk−1

)
= 0, j = 1, 2, . . . , k − 1, (4.4)

and if φ is a transcendental meromorphic function, by the theorem on the loga-
rithmic derivatives,

m

(
r,
Uj(φ)

φk−1

)
= S(r, φ), j = 1, 2, . . . , k − 1. (4.5)
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Using (4.3) we write W as follows

W = (−1)k−1(f1f2 · · · fk−1)
n−k+1

∣∣∣∣∣∣∣
U1(f1) U1(f2) . . . U1(fk−1)

...
... . . . ...

Uk−1(f1) Uk−1(f2) . . . Uk−1(fk−1)

∣∣∣∣∣∣∣
= Vk

∏
1≤j≤k
j ̸=k

fn−k+1
j . (4.6)

Similar to (4.6), using (4.1), we eliminate fm and Fm, 1 ≤ m ≤ k from (4.2),

W = Vm
∏

1≤j≤k
j ̸=m

fn−k+1
j , (4.7)

where

Vm = (−1)m−1

∣∣∣∣∣∣∣
U1(f1) . . . U1(fm−1) U1(fm+1) . . . U1(fk)

... . . . ...
... . . . ...

Uk−1(f1) . . . Uk−1(fm−1) Uk−1(fm+1) . . . Uk−1(fk)

∣∣∣∣∣∣∣ .
(4.8)

We assert that if f1, f2, . . . , fk are rational functions, then

m

 Vm∏
1≤j≤k
j ̸=m

fk−1
j

 = 0, 1 ≤ m ≤ k, (4.9)

and if f1, f2, . . . , fk are transcendental meromorphic functions, then

m

r, Vm∏
1≤j≤k
j ̸=m

fk−1
j

 = S∗(r), 1 ≤ m ≤ k. (4.10)

In fact, it follows from (4.8) that

Vm∏
1≤j≤k
j ̸=m

fk−1
j

= (−1)m−1

∣∣∣∣∣∣∣∣
U1(f1)

fk−1
1

. . . U1(fm−1)

fk−1
m−1

U1(fm+1)

fk−1
m+1

. . . U1(fk)

fk−1
k

... . . . ...
... . . . ...

Uk−1(f1)

fk−1
1

. . . Uk−1(fm−1)

fk−1
m−1

Uk−1(fm+1)

fk−1
m+1

. . . Uk−1(fk)

fk−1
k

∣∣∣∣∣∣∣∣ .
(4.11)

By (4.11), (4.4) and (4.5), the assertions (4.9) and (4.10) are ascertained.

We now let V denote the function

V =
W∏k

j=1 f
n−k+1
j

. (4.12)
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If f1, f2, . . . , fk are all entire functions, then V in (4.12) is an entire function. In
particular, if f1, f2, . . . , fk are all polynomials, then V is a polynomial.

Lemma 4.1 Suppose that f1, f2, . . . , fk are non-constant meromorphic func-
tions satisfying (4.1), where n ≥ k(k−1). Then we obtain the following estimates.

(i) If f1, f2, . . . , fk are rational functions, then m (V ) = 0.

(ii) If f1, f2, . . . , fk are transcendental, then m (r, V ) = S∗(r).

Proof of Lemma 4.1 Since the hypothesis implies that n ≥ k − 1 and k ≥ 2,
we can use the calculations above. From (4.7) and (4.12), we obtain

Vm = fn−k+1
m V, 1 ≤ m ≤ k, (4.13)

and hence

V =
Vm

fn−k+1
m

=

∏
1≤j≤k
j ̸=m

fk−1
j

fn−k+1
m

ηm, with ηm =
Vm∏

1≤j≤k
j ̸=m

fk−1
j

, 1 ≤ m ≤ k.

(4.14)
Note that ηm, 1 ≤ m ≤ k are given by (4.11) and (4.14), and have properties (4.9)
and (4.10). It follows from (4.14) that

V k =
k∏

m=1

∏1≤j≤k
j ̸=m

fk−1
j

fn−k+1
m

ηm

 =

∏k
j=1 f

(k−1)2

j∏k
j=1 f

n−k+1
j

k∏
j=1

ηj =

∏k
j=1 ηj

k∏
j=1

f
n−(k−1)−(k−1)2

j

,

namely,

V k

k∏
j=1

f
n−k(k−1)
j =

k∏
j=1

ηj. (4.15)

Define ∆ by

∆ =
W∏k
j=1 f

n
j

=
W (F1, F2, . . . , Fk)

F1F2 · · ·Fk

=

∣∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1
F ′
1

F1

F ′
2

F2
. . .

F ′
k

Fk
F ′′
1

F1

F ′′
2

F2
. . .

F ′′
k

Fk...
... . . . ...

F
(k−1)
1

F1

F
(k−1)
2

F2
. . .

F
(k−1)
k

Fk

∣∣∣∣∣∣∣∣∣∣∣∣
. (4.16)
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Combining (4.12) and (4.16), we have

∆ =
W∏k
j=1 f

n
j

=
V
∏k

j=1 f
n−k+1
j∏k

j=1 f
n
j

= V

k∏
j=1

f−k+1
j ,

namely,

∆
k∏

j=1

fk−1
j = V. (4.17)

It follows from (4.15) and (4.17) that

V n = ∆n−k(k−1)

k∏
j=1

ηk−1
j . (4.18)

By (4.18), (4.16) and (4.9), we have m (V ) = 0 if f1, f2, . . . , fk are rational
functions, which implies Lemma 4.1 (i). By (4.18), (4.16) and (4.10), we have
m (r, V ) = S∗(r) if f1, f2, . . . , fk are transcendental, which implies Lemma 4.1 (ii).
□

Lemma 4.2 Suppose that f1, f2, . . . , fk are non-constant entire functions satisfy-
ing (4.1), where n ≥ k(k − 1) and k ≥ 3. Further, suppose that z0 is a zero of at
least one of f1, f2, . . . , fk with multiplicity at least k − 1. Then V has a zero at
z0, where V is the entire function given by (4.12).

Let w be a meromorphic function. If z0 is a pole of multiplicity µ (≥ 1) for
w(z), then we set p(z0, w) = µ, and if w(z0) ̸= ∞, then we set p(z0, w) = 0.

Proof of Lemma 4.2 We may assume that z0 is a zero of some fℓ, 1 ≤ ℓ ≤ k
where p(z0, 1/fℓ) ≥ k − 1. By (4.1), it is impossible to have fj(z0) = 0 for
all j = 1, 2, . . . , k. Hence, there exists an integer m satisfying 1 ≤ m ≤ k and
m ̸= ℓ such that fm(z0) ̸= 0. Let ηm be the meromorphic function given by (4.14)
and (4.11). Using the properties of Uj , 1 ≤ j ≤ k, j ̸= m and (4.11), it can be
deduced that ηm has a pole of multiplicity at most

∑k−1
j=1 j = k(k−1)

2
. By (4.14),

the multiplicity of the zero at z0 of V can be estimated as

p

(
z0,

1

V

)
≥ p

(
z0,

1

fk−1
ℓ

)
−p (z0, ηm) ≥ (k−1)2−k(k − 1)

2
=

1

2
(k−1)(k−2) ≥ 1.

This shows that V has a zero at z0. □
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4.3 Main Results
We first consider solutions to (4.1) in the class of rational functions.

Theorem 4.1 Suppose that there exist non-constant rational functions f1, f2, . . . ,
fk satisfying (4.1), where n ≥ k(k − 1) + 1. Let V be the rational function given
by (4.12). Then

(n− k(k − 1))
k∑

j=1

m(fj) ≤ k

(
n(V )− n

(
1

V

))
. (4.19)

Proof of Theorem 4.1 Since the hypothesis implies that n ≥ k − 1 and k ≥ 2,
the calculations in Section 4.2 can be used. We write (4.14) as

fn−k+1
m =

∏
1≤j≤k
j ̸=m

fk−1
j

V
ηm, 1 ≤ m ≤ k. (4.20)

By (4.20), (4.9) and (2.5), we have

(n− k + 1)m(fm) ≤ (k − 1)
∑

1≤j≤k
j ̸=m

m(fj) +m(ηm) +m

(
1

V

)

= (k − 1)
∑

1≤j≤k
j ̸=m

m(fj) +m

(
1

V

)
, 1 ≤ m ≤ k. (4.21)

It follows from (4.21) that

(n− k + 1)
k∑

m=1

m(fm) ≤ (k − 1)
k∑

m=1

∑
1≤j≤k
j ̸=m

m(fj) + km

(
1

V

)

= (k − 1)2
k∑

j=1

m(fj) + km

(
1

V

)
,

which gives

(n− k(k − 1))
k∑

j=1

m(fj) ≤ km

(
1

V

)
. (4.22)

By means of (2.2), (2.3) and (4.22), we obtain

(n− k(k − 1))
k∑

j=1

m(fj) ≤ k

(
n(V ) +m(V )− n

(
1

V

))
. (4.23)
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By (4.23) and Lemma 4.1 (i), we obtain (4.19). We have thus proved Theorem 4.1.
□

Secondly, we consider transcendental meromorphic solutions to (4.1).

Theorem 4.2 Suppose that there exist transcendental meromorphic functions f1,
f2, . . . , fk satisfying (4.1) where n ≥ k(k − 1) + 1. Let V be the meromorphic
function given by (4.12). Then

(n− k(k − 1))
k∑

j=1

m(r, fj) ≤ k

(
N(r, V )−N

(
r,

1

V

))
+ S∗(r). (4.24)

Proof of Theorem 4.2 Using the similar arguments in the proof of Theo-
rem 4.1, we obtain the proof of Theorem 4.2 by replacing m(·) with m(r, ·),
replacing (2.3) with the first fundamental theorem of Nevanlinna, and replacing
Lemma 4.1 (i) with Lemma 4.1 (ii). □
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4.4 Transcendental Entire Solutions
As an application of Theorem 4.2, we obtain the following corollary, which is a
generalization of [16, Proposition 6.1] and Corollary 3.4.

Corollary 4.1 There do not exist transcendental entire solutions to (4.1) for n ≥
k(k−1)+1. If there exist transcendental entire functions f1, f2, . . . , fk satisfying
(4.1) for n = k(k − 1), then there exists a small entire function b with respect to
f1, f2, . . . , fk such that

W (f
k(k−1)
1 , f

k(k−1)
2 , . . . , f

k(k−1)
k ) = b

k∏
j=1

f
(k−1)2

j . (4.25)

Proof of Corollary 4.1 Assume that there exist transcendental entire solutions
f1, f2, . . . , fk to (4.1) for n ≥ k(k − 1) + 1. Since V is entire in this case,
we have N(r, V ) = 0. By means of Theorem 4.2, we have

∑k
j=1m(r, fj) =∑k

j=1 T (r, fj) = S∗(r), a contradiction. Hence, there do not exist transcendental
entire solutions to (4.1) for n ≥ k(k − 1) + 1.

Next we assume that there exist transcendental entire solutions f1, f2, . . . , fk
to (4.1) for n = k(k − 1). By (4.15), (4.14) and (4.10), we have

km(r, V ) ≤
k∑

j=1

m(r, ηj) = S∗(r),

which shows that m(r, V ) = S∗(r). Since V is entire, we have T (r, V ) = S∗(r).
Hence V is a small entire function with respect to f1, f2, . . . , fk. Setting b = V in
(4.12) and noting k(k − 1)− k + 1 = (k − 1)2, we see that (4.25) holds. □

If γ is a nonconstant entire function, then sin2 γ + cos2 γ = 1, which gives an
example of (4.25) with n = k = 2 and b = −2γ′. It is an open question whether
there exist transcendental entire functions f1, f2, . . . , fk that satisfy (4.1) when
n = k(k − 1) and k ≥ 3, and Corollary 4.1 shows that if such solutions were to
exist, then (4.25) would be satisfied.

The first assertion in Corollary 4.1 is the known non-existence theorem, see
e.g. [9], [13], [27]. The above gives an alternative proof.
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4.5 Polynomial Solutions
We first use Theorem 4.1 to give an alternative proof of the known non-existence
theorem for polynomial solutions, see e.g. [9], [13], [24].

Corollary 4.2 There do not exist non-constant polynomial solutions to (4.1) for
n ≥ k(k − 1).

Proof of Corollary 4.2 Assume that there exist non-constant polynomials f1,
f2, . . . , fk satisfying (4.1) for some n and k satisfying n ≥ k(k − 1). Then k ≥ 2
and V in (4.12) is a polynomial. Hence, n(V ) = 0.

When n ≥ k(k−1)+1, we apply Theorem 4.1 to polynomial solutions, noting
that m(fj) = deg fj , j = 1, 2, . . . , k,

k∑
j=1

deg fj ≤ (n− k(k − 1))
k∑

j=1

deg fj ≤ kn(V ) = 0.

Then
∑k

j=1 deg fj = 0, which means that all of f1, f2, . . . , fk are constants, a
contradiction.

We next consider the case n = k(k − 1). Here we can assume that k ≥ 3
because it is well known that the equation f 2

1+f
2
2 = 1 cannot possess non-constant

polynomial solutions, see e.g. [3], [7], [18]. From Lemma 4.1 (i), m(V ) = 0.
Since V is a polynomial, this implies that deg V = 0. Hence, V is a constant.

Since f1, f2, . . . , fk are non-constant polynomials, they have zeros. If there
exists an fℓ, 1 ≤ ℓ ≤ k, having a zero of multiplicity at least k − 1, then by
Lemma 4.2, V has a zero, a contradiction. Hence, each zero of fj , 1 ≤ j ≤ k
is of multiplicity at most k − 2. On the other hand, for any polynomial φ, f1(φ),
f2(φ), . . . , fk(φ) satisfy (4.1). Choosing a suitable polynomial φ, at least one of
f1(φ), f2(φ), . . . , fk(φ) admits a zero of multiplicity at least k − 1, which is a
contradiction. □

Next we make some observations about the degrees of polynomial solutions of
(4.1). In the case when these degrees are all equal, we have the following result,
which is a generalization of Lemma 3.5 (i).

Lemma 4.3 Suppose that (4.1) with n ≥ k − 1 and k ≥ 3 admits non-constant
polynomial solutions f1, f2, . . . , fk which all have the same degree. If we set
d = deg fj for 1 ≤ j ≤ k and set v = deg V where V is the function in (4.12),
then

d
(
k(k − 1)− n

)
≥ k(k − 1)

2
+ v + 1. (4.26)
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Proof of Lemma 4.3 From (4.12),

W = V
k∏

j=1

fn−k+1
j . (4.27)

We estimate the degree of both sides of (4.27). The degree of the right-hand side
of (4.27) is given by

deg
(
V

k∏
j=1

fn−k+1
j

)
= k(n− k + 1)d+ v. (4.28)

Let φ be a polynomial. Recall that Uj(φ), 1 ≤ j ≤ k − 1, are homogeneous
differential polynomials in φ of degree k − 1. We note that, for each j, the total
derivatives in Uj(φ) is equal to j. Hence, degUj(φ) is at most (k − 1) degφ− j.
Since k ≥ 3, we can use (4.8) and the property of determinants to obtain

deg Vm ≤
k−1∑
j=1

(d(k − 1)− j)− 1 = d(k − 1)2 − k(k − 1)

2
− 1. (4.29)

From (4.7) and (4.29),

degW = deg

Vm ∏
1≤j≤k
j ̸=m

fn−k+1
j

 ≤ d(k−1)2−k(k − 1)

2
−1+d(k−1)(n−k+1).

(4.30)
Then (4.26) follows from (4.27), (4.28) and (4.30). □

Various observations from (4.26) can be made. For example, when k = 4 and
n = 11, if there exist non-constant polynomial solutions of (4.1) having the same
degree d, then we can assume that d ≥ 7. When k = 3 and n = 5, if there exist
non-constant polynomial solutions of (4.1) having the same degree d, then we can
assume that d ≥ 4. When k = 3 and n = 2, we have the following example:

(izd)2 +

(
zd + 1√

2

)2

+

(
zd − 1√

2

)2

= 1, (4.31)

where d is an arbitrary positive integer. Computing V of (4.31) by (4.27), we
obtain V = 2d3z3(d−1), which implies v = deg V = 3(d− 1). Hence, the equality
in (4.26) holds when d = 1 in (4.31).

For the case when k = 2, (4.26) does not hold in general. The proof of
Lemma 4.3 for this case does not work because Vm is a 1× 1 determinant and the
property of determinants cannot be used to subtract −1 in (4.29).
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For polynomial solutions that do not all have the same degree, we prove the
following result for k = 3, which is an improvement of Proposition 3.1 (ii).

Proposition 4.1 Suppose that there exist non-constant polynomials f , g, h that
satisfy fn + gn + hn = 1, where 2 ≤ n ≤ 5, such that deg f = deg g > deg h.
Then deg f = deg g ≥ n and deg h ≥ n− 1.

Proof of Proposition 4.1 Since f , g, h are non-constant, the proof is trivial
when n = 2. Suppose that 3 ≤ n ≤ 5. We make the assumption that deg h = p
where p ≤ n− 2. Since the degree of 1− hn is equal to np, the degree of fn + gn

must also be equal to np. We have the factorization

fn + gn =
n∏

j=1

(f + cjg),

where c1, c2, . . . , cn are distinct constants satisfying |cj| = 1 for each j. Therefore,
it can be deduced that

np = deg(fn + gn) ≥ (n− 1)(p+ 1) +m

for some integer m satisfying 0 ≤ m < p + 1. This gives p + 1 ≥ n +m. Since
it was assumed that p ≤ n − 2, we obtain the contradiction m ≤ −1. Hence, we
must have p ≥ n− 1, that is, deg h ≥ n− 1. Thus, deg f = deg g ≥ n. □

The following examples show the sharpness of the Proposition 4.1 when n = 2
and n = 3, respectively:(

5 + z2

4

)2

+

(
(3 + z2)i

4

)2

+

(
iz

2

)2

= 1,(
1 + z3

3
√
2

)3

+

(
1− z3

3
√
2

)3

+ (ω
3
√
3z2)3 = 1,

where ω3 = −1, see e.g. [7], [9], [22] regarding the second example.

4.5.1 Examples for The Case of k = 3 and n = 3

We consider the case k = 3 and n = 3 of polynomial solutions of (4.1). Namely,
target equation is f 3 + g3 + h3 = 1. Furthermore,we suppose deg f = deg g =
deg h = 3. As far as we have investigated, we have not found an example of this
case. The polynomials f , g, and h are described as follows.

f = a1z
3 + b1z

2 + c1z + d1, (4.32)
g = a2z

3 + b2z
2 + c2z + d2, (4.33)

h = a3z
3 + b3z

2 + c3z + d3. (4.34)
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Assume the coefficients as follows and reduce the unknown coefficients.

a1 = 1, d1 = 0,

d2 = 0,

b3 = 0, c3 = 0, d3 = 1.

Then the polynomial is denoted as follows.

f = z3 + b1z
2 + c1z, (4.35)

g = a2z
3 + b2z

2 + c2z, (4.36)
h = a3z

3 + 1. (4.37)

We consider the coefficients of the polynomials f , g, h so as to satisfy the
following functional equation.

f 3 + g3 + h3 = 1. (4.38)

However, if a2, and a3, are zero, it is not a solution because it is not a three
degree polynomial.
We find 54 sets of coefficients by combining equations (4.35) to (4.37). In order
to organize the above set of coefficients, we let them as follows.

SJ = ei
π
9 , (4.39)

SM = e−iπ
9 , (4.40)

WQ = (3(−2 + ei
π
3 )

1
9 , (4.41)

WN = (3(−2− ei
2π
3 )

1
9 . (4.42)

In addition we use the following relation.

SM j = SJ18−j (j = 1, 2, . . . , 16, 17) (4.43)

The 54 sets of solutions are described in the tables in Appendix A using (4.39) to
(4.43). We organize the solutions shown in Appendix A into the following general

form.

a1 = 1, a2 = SJ6l−4, a3 =
1

3
SJ6m−3WN6,

b1 = SJ6s+2δ−3WN, b2 = SJ6l+6s+2δ−4WN, b3 = 0,

c1 = SJ−6s+4δ+15WN2, c2 = SJ6l−6s+4δ+11WN2, c3 = 0,

d1 = 0, d2 = 0, d3 = 1.
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and

a1 = 1, a2 = SM6l−4, a3 =
1

3
SM6m−3WQ6,

b1 = SM6s+2δ−3WQ, b2 = SM6l+6s+2δ−4WQ, b3 = 0,

c1 = SM−6s+4δ+15WQ2, c2 = SM6l−6s+4δ+11WQ2, c3 = 0,

d1 = 0, d2 = 0, d3 = 1,

where

l = 1, 2, 3 m = 1, 2, 3 s = 1, 2, 3

δ = 0 (m = 1), δ = −1 (m = 2), δ = 1 (m = 3).

The above gives an example of polynomial solutions for the case k = 3 and
n = 3, f 3 + g3 + h3 = 1.
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4.6 Four Functions
When k = 2, all the values of n for which (4.1) admits non-constant solutions
in each of the four function classes (meromorphic, rational, entire, polynomial)
have been settled. When k = 3 in (4.1), the open questions are as follows: mero-
morphic (n = 7, 8), rational (n = 6, 7), entire (n = 6), polynomial (n = 4, 5).
Regarding these statements, see e.g. [7], [8], [9], [13] and the references therein.

Here we discuss the situation when k = 4 in (4.1), that is, we address the
functional equation

fn + gn + hn + wn = 1. (4.44)

For the known non-existence theorems on (4.44) regarding the four function classes,
see [9], [13].

There exist transcendental meromorphic solutions of (4.44) when n = 8, see
[7, Example 3.2]. Equation (4.44) admits non-constant rational solutions when
n = 7: if α = e2πi/3, then

1
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(
1 + z7

z2

)7

+
α
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(
1 + αz7

z2

)7

+
α2

63

(
1 + α2z7

z2

)7

− (z3)7 = 1. (4.45)

By replacing z with ez in (4.45), we obtain transcendental entire solutions of
(4.44). Formula (4.45) comes from a general identity [24, p. 486] which shows
that (4.44) possesses non-constant rational solutions and transcendental entire so-
lutions for all n ≤ 7.

Equation (4.44) admits non-constant polynomial solutions when n = 5: if
α = e2πi/3, then

1

3
(1 + αz5)5 +

1

3
(1 + α2z5)5 +

1

3
(1 + z5)5 − 10(z3)5 = 1. (4.46)

Equation (4.46) comes from a general identity [22, p. 50] which shows that (4.44)
possesses non-constant polynomial solutions for all n ≤ 5.

From the above examples and the known non-existence theorems, see e.g.
[9], [13], it appears that the open questions on whether or not the equation (4.44)
can possess non-constant solutions in each class of functions are as follows: mero-
morphic functions (9 ≤ n ≤ 15), rational functions (8 ≤ n ≤ 14), entire func-
tions (8 ≤ n ≤ 12) and polynomials (6 ≤ n ≤ 11).
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Fig. 4.2: Known Results for fn + gn + hn + wn = 1



Appendix A

Table 4.1: The group of solutions where a2 = SJ2

a2 a3 b1 b2 c1 c2

SJ2 1
3
SJ3WN6 SJ3WN SJ8WN SJ9WN2 SJ11WN2

SJ2 1
3
SJ3WN6 SJ9WN SJ14WN SJ3WN2 SJ5WN2

SJ2 1
3
SJ3WN6 SJ15WN SJ2WN SJ15WN2 SJ17WN2

SJ2 1
3
SJ9WN6 SJ1WN SJ6WN SJ5WN2 SJ7WN2

SJ2 1
3
SJ9WN6 SJ7WN SJ12WN SJ17WN2 SJ1WN2

SJ2 1
3
SJ9WN6 SJ13WN SJ0WN SJ11WN2 SJ13WN2

SJ2 1
3
SJ15WN6 SJ5WN SJ10WN SJ13WN2 SJ15WN2

SJ2 1
3
SJ15WN6 SJ11WN SJ16WN SJ7WN2 SJ9WN2

SJ2 1
3
SJ15WN6 SJ17WN SJ4WN SJ1WN2 SJ3WN2
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Table 4.2: The group of solutions where a2 = SJ8

a2 a3 b1 b2 c1 c2

SJ8 1
3
SJ3WN6 SJ3WN SJ14WN SJ9WN2 SJ17WN2

SJ8 1
3
SJ3WN6 SJ9WN SJ2WN SJ3WN2 SJ11WN2

SJ8 1
3
SJ3WN6 SJ15WN SJ8WN SJ15WN2 SJ5WN2

SJ8 1
3
SJ9WN6 SJ1WN SJ12WN SJ5WN2 SJ13WN2

SJ8 1
3
SJ9WN6 SJ7WN SJ0WN SJ17WN2 SJ7WN2

SJ8 1
3
SJ9WN6 SJ13WN SJ6WN SJ11WN2 SJ1WN2

SJ8 1
3
SJ15WN6 SJ5WN SJ16WN SJ13WN2 SJ3WN2

SJ8 1
3
SJ15WN6 SJ11WN SJ4WN SJ7WN2 SJ15WN2

SJ8 1
3
SJ15WN6 SJ17WN SJ10WN SJ1WN2 SJ9WN2

Table 4.3: The group of solutions where a2 = SJ14

a2 a3 b1 b2 c1 c2

SJ14 1
3
SJ3WN6 SJ3WN SJ2WN SJ9WN2 SJ5WN2

SJ14 1
3
SJ3WN6 SJ9WN SJ8WN SJ3WN2 SJ17WN2

SJ14 1
3
SJ3WN6 SJ15WN SJ14WN SJ15WN2 SJ11WN2

SJ14 1
3
SJ9WN6 SJ1WN SJ0WN SJ5WN2 SJ1WN2

SJ14 1
3
SJ9WN6 SJ7WN SJ6WN SJ17WN2 SJ13WN2

SJ14 1
3
SJ9WN6 SJ13WN SJ12WN SJ11WN2 SJ17WN2

SJ14 1
3
SJ15WN6 SJ5WN SJ4WN SJ13WN2 SJ9WN2

SJ14 1
3
SJ15WN6 SJ11WN SJ10WN SJ7WN2 SJ3WN2

SJ14 1
3
SJ15WN6 SJ17WN SJ16WN SJ1WN2 SJ15WN2
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Table 4.4: The group of solutions where a2 = SM2

a2 a3 b1 b2 c1 c2

SM2 1
3
SM3WQ6 SM3WQ SM8WQ SM9WQ2 SM11WQ2

SM2 1
3
SM3WQ6 SM9WQ SM14WQ SM3WQ2 SM5WQ2

SM2 1
3
SM3WQ6 SM15WQ SM2WQ SM15WQ2 SM17WQ2

SM2 1
3
SM9WQ6 SM1WQ SM6WQ SM5WQ2 SM7WQ2

SM2 1
3
SM9WQ6 SM7WQ SM12WQ SM17WQ2 SM1WQ2

SM2 1
3
SM9WQ6 SM13WQ SM0WQ SM11WQ2 SM13WQ2

SM2 1
3
SM15WQ6 SM5WQ SM10WQ SM13WQ2 SM15WQ2

SM2 1
3
SM15WQ6 SM11WQ SM16WQ SM7WQ2 SM9WQ2

SM2 1
3
SM15WQ6 SM17WQ SM4WQ SM1WQ2 SM3WQ2

Table 4.5: The group of solutions where a2 = SM8

a2 a3 b1 b2 c1 c2

SM8 1
3
SM3WQ6 SM3WQ SM14WQ SM9WQ2 SM17WQ2

SM8 1
3
SM3WQ6 SM9WQ SM2WQ SM3WQ2 SM11WQ2

SM8 1
3
SM3WQ6 SM15WQ SM8WQ SM15WQ2 SM5WQ2

SM8 1
3
SM9WQ6 SM1WQ SM12WQ SM5WQ2 SM13WQ2

SM8 1
3
SM9WQ6 SM7WQ SM0WQ SM17WQ2 SM7WQ2

SM8 1
3
SM9WQ6 SM13WQ SM6WQ SM11WQ2 SM1WQ2

SM8 1
3
SM15WQ6 SM5WQ SM16WQ SM13WQ2 SM3WQ2

SM8 1
3
SM15WQ6 SM11WQ SM4WQ SM7WQ2 SM15WQ2

SM8 1
3
SM15WQ6 SM17WQ SM10WQ SM1WQ2 SM9WQ2
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Table 4.6: The group of solutions where a2 = SM14

a2 a3 b1 b2 c1 c2

SM14 1
3
SM3WQ6 SM3WQ SM2WQ SM9WQ2 SM5WQ2

SM14 1
3
SM3WQ6 SM9WQ SM8WQ SM3WQ2 SM17WQ2

SM14 1
3
SM3WQ6 SM15WQ SM14WQ SM15WQ2 SM11WQ2

SM14 1
3
SM9WQ6 SM1WQ SM0WQ SM5WQ2 SM1WQ2

SM14 1
3
SM9WQ6 SM7WQ SM6WQ SM17WQ2 SM13WQ2

SM14 1
3
SM9WQ6 SM13WQ SM12WQ SM11WQ2 SM17WQ2

SM14 1
3
SM15WQ6 SM5WQ SM4WQ SM13WQ2 SM9WQ2

SM14 1
3
SM15WQ6 SM11WQ SM10WQ SM7WQ2 SM3WQ2

SM14 1
3
SM15WQ6 SM17WQ SM16WQ SM1WQ2 SM15WQ2
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