{"created":"2023-06-20T15:28:18.893952+00:00","id":7319,"links":{},"metadata":{"_buckets":{"deposit":"5350ebb2-ac8a-48ee-9921-d6f17781266e"},"_deposit":{"created_by":3,"id":"7319","owners":[3],"pid":{"revision_id":0,"type":"depid","value":"7319"},"status":"published"},"_oai":{"id":"oai:ouj.repo.nii.ac.jp:00007319","sets":["470:394:452"]},"author_link":["9068","9069"],"item_10002_biblio_info_7":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicIssueDates":{"bibliographicIssueDate":"1993-03-30","bibliographicIssueDateType":"Issued"},"bibliographicPageEnd":"132","bibliographicPageStart":"123","bibliographicVolumeNumber":"10","bibliographic_titles":[{"bibliographic_title":"放送大学研究年報"},{"bibliographic_title":"Journal of the University of the Air","bibliographic_titleLang":"en"}]}]},"item_10002_description_5":{"attribute_name":"抄録","attribute_value_mlt":[{"subitem_description":" Hopf関数は,放射平衡にある平面平行近似の灰色大気の源泉関数において光学的深さの非線形部分を表わす関数である.灰色大気の源泉関数は,モデル大気を求める逐次計算において第1近似の源泉関数としてよく用いられる他,放射強度や放射流束の数値計算の精度を見積る際にもよく用いられる.そのような場合,Hopf関数の値を精度よく短い時間で計算しなければならない。\n そのためのHopf関数の近似式として,Kourganoffが導いた6次までの積分指数関数による展開式およびそれにΛ積分を施した展開式が利用されてきた.最近,篠塚が,Hopf関数の近似式として8次までの積分指数関数による展開式およびそれにΛ積分を施した展開式をKourganoffと同じ方法で導いた.その結果,Kourganoffの近似式が±3×10-4%の精度なのに対し,篠塚の近似式は±2×10-5%の精度が得られ,10倍以上精度が上がった。\n 本研究では,篠塚の近似式の係数を平均誤差が最小になるように改良した.その結果,τ≧0.01の範囲では±4×10-6%の精度で値が得られることになり,篠塚の近似式の3倍以上,Kourganoffの近似式の60倍以上精度が上がった.なお,Kourganoffの近似式に比べ,本研究および篠塚の近似式では展開式の次数が増した分,計算時間が増すが,その割合は高々25%にすぎない.","subitem_description_type":"Abstract"}]},"item_10002_source_id_11":{"attribute_name":"書誌レコードID","attribute_value_mlt":[{"subitem_source_identifier":"AN10019636","subitem_source_identifier_type":"NCID"}]},"item_10002_source_id_9":{"attribute_name":"ISSN","attribute_value_mlt":[{"subitem_source_identifier":"0911-4505","subitem_source_identifier_type":"ISSN"}]},"item_creator":{"attribute_name":"著者","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"吉岡, 一男"},{"creatorName":"ヨシオカ, カズオ","creatorNameLang":"ja-Kana"}],"nameIdentifiers":[{"nameIdentifier":"9068","nameIdentifierScheme":"WEKO"}]},{"creatorNames":[{"creatorName":"Yoshioka, Kazuo","creatorNameLang":"en"}],"nameIdentifiers":[{"nameIdentifier":"9069","nameIdentifierScheme":"WEKO"}]}]},"item_files":{"attribute_name":"ファイル情報","attribute_type":"file","attribute_value_mlt":[{"accessrole":"open_date","date":[{"dateType":"Available","dateValue":"2013-06-14"}],"displaytype":"detail","filename":"NO_10-123-132.pdf","filesize":[{"value":"623.6 kB"}],"format":"application/pdf","licensetype":"license_note","mimetype":"application/pdf","url":{"label":"NO_10-123-132","url":"https://ouj.repo.nii.ac.jp/record/7319/files/NO_10-123-132.pdf"},"version_id":"c759586c-0849-4457-a35e-ebe59fe66c41"}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"eng"}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourcetype":"departmental bulletin paper","resourceuri":"http://purl.org/coar/resource_type/c_6501"}]},"item_title":"Hopf関数の新しい近似式","item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"Hopf関数の新しい近似式"},{"subitem_title":"New Approximate Formulae for Hopf's Function","subitem_title_language":"en"}]},"item_type_id":"10002","owner":"3","path":["452"],"pubdate":{"attribute_name":"公開日","attribute_value":"2013-06-14"},"publish_date":"2013-06-14","publish_status":"0","recid":"7319","relation_version_is_last":true,"title":["Hopf関数の新しい近似式"],"weko_creator_id":"3","weko_shared_id":3},"updated":"2023-06-20T16:16:48.946550+00:00"}