{"created":"2023-06-20T15:28:27.264091+00:00","id":7523,"links":{},"metadata":{"_buckets":{"deposit":"35bc651a-df07-47bd-ace2-3e6cc1d5c04e"},"_deposit":{"created_by":3,"id":"7523","owners":[3],"pid":{"revision_id":0,"type":"depid","value":"7523"},"status":"published"},"_oai":{"id":"oai:ouj.repo.nii.ac.jp:00007523","sets":["470:394:436"]},"author_link":["9567","9569","9568","9566"],"item_10002_biblio_info_7":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicIssueDates":{"bibliographicIssueDate":"2009-03-19","bibliographicIssueDateType":"Issued"},"bibliographicPageEnd":"125","bibliographicPageStart":"119","bibliographicVolumeNumber":"26","bibliographic_titles":[{"bibliographic_title":"放送大学研究年報"},{"bibliographic_title":"Journal of the Open University of Japan","bibliographic_titleLang":"en"}]}]},"item_10002_description_5":{"attribute_name":"抄録","attribute_value_mlt":[{"subitem_description":" われわれは、NelderとMeadによる滑降シンプレックス法を適用して成長曲線から大気パラメータを求めるプログラムを作成した。本プログラムは、Δx、Δy、θex、and log10 2αの4つの変数とする4次元空間中の5個の頂点から成るシンプレックスにおいて、出発点となるシンプレックスから最適の点の座標として4変数を求めるものである。なお、Δx は観測された成長曲線と理論成長曲線の横軸の差を意味し、Δyは両成長曲線の縦軸の差を意味する。ここで、目的関数はプロットされた吸収線の横軸上のちらばりの分散値とした。本プログラムは、Sprottが作成した滑降シンプレックス法のプログラムと吉岡が作成した成長曲線法解析の方法2のプログラムを組み合わせたものである。\n われわれは、本プログラムと吉岡の方法2のプログラムの結果を比較することにより、本プログラムの有効性を調べた。比較に使われたデータは、HD187203の86本のFeⅠの吸収線である。そして、次の結論を得た。\n1)許される有効数字内での最適の値は、滑降シンプレックス法での許容相対誤差を0.001~0.00001にとれば得られる。\n2)最適の値は、出発点となるシンプレックスの選び方によって変わる。しかしその差は、成長曲線法として許される範囲内にある。\n3)本プログラムは、吉岡の方法2のプログラムと比べて、かなり短いステップで得られるので、かなり時間を短縮でき、有効な方法と言える。","subitem_description_type":"Abstract"}]},"item_10002_source_id_11":{"attribute_name":"書誌レコードID","attribute_value_mlt":[{"subitem_source_identifier":"AN10019636","subitem_source_identifier_type":"NCID"}]},"item_10002_source_id_9":{"attribute_name":"ISSN","attribute_value_mlt":[{"subitem_source_identifier":"0911-4505","subitem_source_identifier_type":"ISSN"}]},"item_10002_textarea_25":{"attribute_name":"抄録(英)","attribute_value_mlt":[{"subitem_textarea_language":"en","subitem_textarea_value":" We made the program which determine the atmospheric parameters from the curve-of-growth by the downhill simplex method due to Nelder and Mead. This program determines the four variables, Δx, Δy, θex, and log10 2α as the best point of the four variables from the starting set of 5 points of the four variables, where Δx is a difference between an empirical curve-of-growth and a theoretical curve-of-growth in the direction parallel to the abscissa and Δy is a difference between an empirical curve-of-growth and a theoretical curve-of-growth in the direction parallel to the ordinate. The objective function is taken to be the variance of lines in curve-of-growth in the direction parallel to the abscissa. This program is the combination between the program of the above downhill simplex method by Sprott and the program of the method 2 for curve-of-growth analysis by Yoshioka.\n The effectiveness of this program was tested by comparing the results by this program with that by the program of the method 2 by Yoshioka. The data used for the comparison are those for 86 lines of Fe Ⅰ of HD187203. The following conclusions were drawn from the test.\n1) The best point is obtained for the tolerance values of the objective function between 0.001 to 0.00001.\n2) The best point depends on the starting set. But, the uncertainty due to the starting set is small in comparison with the one due to other cause in the curve-of-growth analysis.\n3) This program is an effective method for the curve-of-growth analysis. In comparison with the program of the method 2 by Yoshioka, this program reaches the four variables in quite short steps and in quite a short time."}]},"item_creator":{"attribute_name":"著者","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"吉岡, 一男"},{"creatorName":"ヨシオカ, カズオ","creatorNameLang":"ja-Kana"}],"nameIdentifiers":[{"nameIdentifier":"9566","nameIdentifierScheme":"WEKO"}]},{"creatorNames":[{"creatorName":"小林, 康夫"},{"creatorName":"コバヤシ, ヤスオ","creatorNameLang":"ja-Kana"}],"nameIdentifiers":[{"nameIdentifier":"9567","nameIdentifierScheme":"WEKO"}]},{"creatorNames":[{"creatorName":"Yoshioka, Kazuo","creatorNameLang":"en"}],"nameIdentifiers":[{"nameIdentifier":"9568","nameIdentifierScheme":"WEKO"}]},{"creatorNames":[{"creatorName":"Kobayashi, Yasuo","creatorNameLang":"en"}],"nameIdentifiers":[{"nameIdentifier":"9569","nameIdentifierScheme":"WEKO"}]}]},"item_files":{"attribute_name":"ファイル情報","attribute_type":"file","attribute_value_mlt":[{"accessrole":"open_date","date":[{"dateType":"Available","dateValue":"2013-06-14"}],"displaytype":"detail","filename":"26-11.pdf","filesize":[{"value":"127.3 kB"}],"format":"application/pdf","licensetype":"license_note","mimetype":"application/pdf","url":{"label":"26-11","url":"https://ouj.repo.nii.ac.jp/record/7523/files/26-11.pdf"},"version_id":"a70262d4-b4f7-4626-a37e-54a1997b8ba9"}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"eng"}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourcetype":"departmental bulletin paper","resourceuri":"http://purl.org/coar/resource_type/c_6501"}]},"item_title":"滑降シンプレックス法による成長曲線からの大気パラメータの決定","item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"滑降シンプレックス法による成長曲線からの大気パラメータの決定"},{"subitem_title":"The Determination of Atmospheric Parameters of Curve-of-Growth by the Downhill Simplex Method","subitem_title_language":"en"}]},"item_type_id":"10002","owner":"3","path":["436"],"pubdate":{"attribute_name":"公開日","attribute_value":"2013-06-14"},"publish_date":"2013-06-14","publish_status":"0","recid":"7523","relation_version_is_last":true,"title":["滑降シンプレックス法による成長曲線からの大気パラメータの決定"],"weko_creator_id":"3","weko_shared_id":3},"updated":"2023-06-20T16:19:04.405479+00:00"}