{"created":"2023-06-20T15:28:49.275365+00:00","id":8358,"links":{},"metadata":{"_buckets":{"deposit":"901ac41d-1c7a-4d30-84ad-d86fdcd20edb"},"_deposit":{"created_by":12,"id":"8358","owners":[12],"pid":{"revision_id":0,"type":"depid","value":"8358"},"status":"published"},"_oai":{"id":"oai:ouj.repo.nii.ac.jp:00008358","sets":["470:394:542"]},"author_link":["10610","10609"],"item_10002_biblio_info_7":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicIssueDates":{"bibliographicIssueDate":"2015-03-20","bibliographicIssueDateType":"Issued"},"bibliographicPageEnd":"116","bibliographicPageStart":"113","bibliographicVolumeNumber":"32","bibliographic_titles":[{"bibliographic_title":"放送大学研究年報 = Journal of The Open University of Japan"}]}]},"item_10002_description_12":{"attribute_name":"論文ID(NAID)","attribute_value_mlt":[{"subitem_description":"40020473209","subitem_description_type":"Other"}]},"item_10002_description_5":{"attribute_name":"抄録","attribute_value_mlt":[{"subitem_description":" 複素平面上で整関数を係数とする線形同次微分方程式を取り扱う。与えられた方程式の整関数解の零点を記述する\n複素振動について考える。特に,係数が指数多項式である2階の方程式               の複素振\n動を調べることに問題意識をおく。この方程式の先行研究についての解説を与えると共に,除外的な場合の例を構成\nする。","subitem_description_type":"Abstract"}]},"item_10002_publisher_8":{"attribute_name":"出版者","attribute_value_mlt":[{"subitem_publisher":"放送大学"}]},"item_10002_source_id_11":{"attribute_name":"書誌レコードID","attribute_value_mlt":[{"subitem_source_identifier":"AN10019636","subitem_source_identifier_type":"NCID"}]},"item_10002_source_id_9":{"attribute_name":"ISSN","attribute_value_mlt":[{"subitem_source_identifier":"0911-4505","subitem_source_identifier_type":"ISSN"}]},"item_10002_textarea_25":{"attribute_name":"抄録(英)","attribute_value_mlt":[{"subitem_textarea_language":"en","subitem_textarea_value":" We treat linear homogeneous differential equations in the complex plane with entire coefficients. We are concerned\nwith the complex oscillation to describe the distributions of zeros of entire solutions. The case with exponential\npolynomials are mainly considered, in particular, f\"+(eP1(z)+eP2(z)+q(z))f = 0 is investigated. We give an survey\non the research of this equation, and construct examples for exceptional cases."}]},"item_10002_version_type_20":{"attribute_name":"著者版フラグ","attribute_value_mlt":[{"subitem_version_resource":"http://purl.org/coar/version/c_970fb48d4fbd8a85","subitem_version_type":"VoR"}]},"item_creator":{"attribute_name":"著者","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"石崎, 克也"},{"creatorName":"イシザキ, カツヤ","creatorNameLang":"ja-Kana"}],"nameIdentifiers":[{"nameIdentifier":"10609","nameIdentifierScheme":"WEKO"}]},{"creatorNames":[{"creatorName":"Ishizaki, Katsuya","creatorNameLang":"en"}],"nameIdentifiers":[{"nameIdentifier":"10610","nameIdentifierScheme":"WEKO"}]}]},"item_files":{"attribute_name":"ファイル情報","attribute_type":"file","attribute_value_mlt":[{"accessrole":"open_date","date":[{"dateType":"Available","dateValue":"2015-10-20"}],"displaytype":"detail","filename":"32_09.pdf","filesize":[{"value":"455.3 kB"}],"format":"application/pdf","licensetype":"license_note","mimetype":"application/pdf","url":{"label":"複素領域における振動問題について","url":"https://ouj.repo.nii.ac.jp/record/8358/files/32_09.pdf"},"version_id":"c805fc54-4664-4201-840b-af748e154e5b"}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"eng"}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourcetype":"departmental bulletin paper","resourceuri":"http://purl.org/coar/resource_type/c_6501"}]},"item_title":"複素領域における振動問題について","item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"複素領域における振動問題について"},{"subitem_title":"Complex Oscillation Theory in Some Complex Domains","subitem_title_language":"en"}]},"item_type_id":"10002","owner":"12","path":["542"],"pubdate":{"attribute_name":"公開日","attribute_value":"2015-10-20"},"publish_date":"2015-10-20","publish_status":"0","recid":"8358","relation_version_is_last":true,"title":["複素領域における振動問題について"],"weko_creator_id":"12","weko_shared_id":-1},"updated":"2023-12-19T06:58:31.550848+00:00"}